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ABSTRACT 
 

 The 8-aminoquinoline (8AQ) antimalarial drug primaquine (PQ) is the only drug for 

prevention of malaria relapse. Moreover, PQ also has gametocytocidal activity against 

Plasmodium falciparum. However, clinical use of PQ has been limited due to its hemolytic 

toxicity, especially in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals. 

Phenolic and quinone metabolites generated via cytochrome P450-dependent pathways appear to 

be responsible for hemolytic effects of PQ. However, the mechanism for the hemolytic toxicity of 

PQ is still poorly understood.  

To explore the mechanism, targets, and pathways for toxicity of PQ, normal and  G6PDd 

human erythrocytes were treated with the potential hemotoxic metabolites of PQ namely, 5-

hydroxy-primaquine (5-HPQ), 5,6-orthoquinone primaquine (5,6-OQPQ) and 6-methoxy-8-

hydroxylaminoquinoline (MHQ). The early and late biomarkers of hemotoxicity were investigated 

to explore the mechanism of PQ toxicity. 5-HPQ, 5,6-OQPQ, and MHQ caused marked increase 

in methemoglobin formation and generated robust oxidative stress in both normal and G6PDd 

human erythrocytes. However, these metabolites depleted reduce glutathione (GSH) levels 

selectively in G6PDd human erythrocytes. Treatment with 5,6-OQPQ also induced eryptosis in 

G6PDd erythrocytes, as determined by phosphatidylserine exposure (Annexin V binding).     

This study was further extended to investigate the role of NRH-quinone oxidoreductase 2  

(NQO2) in PQ-induced hemolytic toxicity. NQO2, has a potential function in metabolic 

detoxification or activation of quinones and quinone-based drugs. Co-treatment of erythrocytes 
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with NQO2 inhibitors potentiated the hemotoxic response of PQ metabolites. The computational 

docking studies suggested stronger interactions of PQ metabolites with NQO2 compared to 

melatonin (the NQO2 inhibitor) and menadione (the NQO2 substrate). Together these results 

suggest that NQO2 might have a protective role against PQ-induced hemolytic toxicity.  

The PQ metabolite, 5,6-OQPQ was further evaluated for the effects on the non-targeted 

global metabolomic profile of normal and G6PDd human erythrocytes.  The GSH-methionine-

glutamate pathway metabolites were greatly affected by G6PD deficiency. Treatment with 5,6-

OQPQ also significantly modified GSH-methionine-glutamic acid pathway in erythrocytes. 

Treatment also increased the levels of antioxidant and hemolysis related markers in erythrocytes. 

These studies provide a better insight into the pathophysiology of hemolytic toxicity caused 

by PQ in the G6PDd population.The new knowledge generated would provide rational bases for 

controlling toxicity of PQ and designing  8AQ analogs with better safety and therapeutic profiles. 
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CHAPTER 1 

DRUG-INDUCED OXIDATIVE HEMOLYTIC ANEMIA 

 

1.1. INTRODUCTION 

The pathophysiological and toxic manifestations caused due to treatment with a drug in the 

blood cells are clinically referred as drug-induced hematologic disorders. The drug-induced 

hematologic disorders can affect all types blood cells including leukocytes, erythrocytes, and 

platelets. Reduction in all three cell-types with a hypoplastic bone marrow, due to a drug-treatment 

is referred as drug-induced aplastic anemia. The reduction in leukocytes alone due to a drug-

treatment is known as drug-induced agranulocytosis. The decrease in platelet counts due to drug 

exposure is called drug-induced thrombocytopenia (Kamakshi 2014). Decrease in hematocrit 

primarily due to hemolytic reactions or an accelerated removal of red blood cells is known as 

hemolytic anemia.    

Drug treatments can affect erythrocytes by causing various hemolytic anemias, comprising 

drug-induced immune hemolytic anemia, drug-induced megaloblastic anemia and drug-induced 

oxidative hemolytic anemia (Kamakshi 2014). Hemolysis is the removal of damaged erythrocytes 

from the circulation before their normal life span (120 days). Hemolysis can remain asymptomatic 

for a lifetime and most often represents as anemia when erythrocytosis cannot balance the rate of 

erythrocytes destruction. The clinical manifestation of hemolytic anemia are dark urine. 

cholelithiasis, isolated reticulocytotic or jaundice (Dhaliwal et al. 2004). 
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In drug-induced immune hemolytic anemia, the body generated immunoglobin G or 

immunoglobulin M (IgM) (or both) against the erythrocytes, and these antibodies bind to antigens 

on the surface of erythrocytes. The binding of antibodies and antigens triggers the destruction of 

erythrocytes via the complement and mononuclear phagocytic systems (Garratty 2012). Th drugs 

which directly or indirectly affect DNA synthesis cause megaloblastic hemolysis. In this type of 

hemolytic anemia, the development of megaloblasts, the precursor of erythrocytes, is abnormal in 

bone marrow (Scott and Weir 1980). The drugs which produce oxidative stress and have potential 

to undergo redox cycling cause drug-induced oxidative hemolytic anemia. Such type of anemia is 

commonly seen in a genetic condition of glucose 6 phosphate dehydrogenase (G6PD) enzyme 

deficiency (Winterbourn 1985; Fibach and Rachmilewitz 2008). 

Drug-induced hemolytic anemia can be intravascular or extravascular. In intravascular 

hemolysis, the destruction of erythrocytes occurs in the circulation, and the content of erythrocytes 

is released into the vascular compartment. The common causes of intravascular hemolysis are 

complement fixation, immune complex deposition, infectious agent, membrane damage and 

membrane trauma due to oxidative damage. The second type of hemolysis is extravascular 

hemolysis and is relatively more common than intravascular hemolysis. In extravascular 

hemolysis, the damaged erythrocytes that contain membrane alterations are eliminated from the 

circulation by macrophages of the liver and spleen (Dhaliwal et al. 2004; Kamakshi 2014).  

 

1.2. GLUCOSE 6 PHOSPHATE DEHYDROGENASE DEFICIENCY 

 G6PD deficiency is the most common enzymopathy with more than 400 million cases in 

worldwide and is frequent in malaria endemic countries (Youngster et al. 2010; Mason et al. 2007). 

G6PD deficiency is an  X-linked hereditary disorder caused due to a mutation in G6PD gene 
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(Cappellini and Fiorelli 2008; Youngster et al. 2010).   G6PD  deficiency has more than 400 allelic 

variants (Nkhoma et al. 2009), and PQ causes hemolysis in all variants (Mason et al. 2007). G6PD 

enzyme deficiency is highly prevalent in Africa, southern Europe, the middle east, southeast Asia, 

and the central and southern Pacific islands. However, due to migrations, this deficiency is 

relatively prevalent in North and South America and parts of northern Europe (Cappellini and 

Fiorelli 2008). The clinical manifestations of hemolytic toxicity depend mainly on the amount of 

oxidative stress and severity of the patient’s G6PD genetic defect (Cappellini and Fiorelli 2008; 

Kamakshi 2014).  The most common G6PD variants are the Mediterranean variant and  African 

variant. A Mediterranean variant is the most severe G6PDd variant and is mainly found in Europe, 

west and central Asia, and northern India. African variant is the mildest variant. This variant is 

predominant in sub-Saharan Africa and African-Americans. (Cappellini and Fiorelli 2008) 

G6PD enzyme participates in the pentose phosphate pathway, which is the sole source for 

production of NADPH,  glutathione recycling in erythrocytes, and is essential for the function of 

catalase (Figure 1.1) (Nkhoma et al. 2009; Mason et al. 2007; Cappellini and Fiorelli 2008; Judith 

Recht 2014). NADPH, GSH, and catalase constitute primary antioxidant defense system in human 

erythrocytes (Judith Recht 2014). The G6PDd erythrocytes have limited capability to regenerate 

NADPH and recycle GSH. Oxidative stress may exhaust the cellular GSH in G6PDd erythrocytes 

due to compromised efficiency to produce NADPH. The later events may cause cellular and 

molecular changes in erythrocytes, which may lead to hemolytic anemia in the G6PDd population 

treated with drugs causing oxidative stress (Mason et al. 2007). 
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Figure 1.1: Role of glucose 6 phosphate dehydrogenase (G6PD) and other antioxidant enzymes 
against oxidative stress. NADP- Nicotinamide adenine dinucleotide phosphate. NADPH- 
Nicotinamide adenine dinucleotide phosphate hydrogen. (Youngster et al. 2010) 
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1.3. OXIDATIVE STRESS IN ERYTHROCYTES 

1.3. 1. Reactive oxygen species 

 The oxidative status of cells is regulated by the equilibrium between pro-oxidants and 

antioxidants. Reductants donate electrons, and oxidants accept electrons. Prooxidants act as 

reactive oxygen species (ROS) and are classified into nonradicals and radicals. The radicals have 

at least an unpaired electron, which is responsible for high reactivity. Radicals either accept or 

donate an electron to gain stability. The radicals react rapidly with other molecules and thus have 

a short half-life. The most common radicals in biological systems are alkoxyl radicals (RO˙), 

hydroxyl radical (OH˙), nitric oxide radical (NO˙), superoxide ion radical (O˙- 2), and one form of 

singlet oxygen (1O2). The non-radical ROS life span varies from seconds to hours. Non-radical 

reactive oxygen species include the aldehydes, hypochlorous acid (HClO), hydrogen peroxide 

(H2O2), organic peroxides, ozone (O3) and molecular oxygen (O2) (Fibach and Rachmilewitz 2008; 

Winterbourn 1985). The properties of common ROS are described in Table 1.1.  
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Table 1.1: Characteristics of common reactive oxygen species (ROS) (Winterbourn 1985). 
 

ROS 
 

Characteristics 

Hydrogen 
peroxide (H2O2) 

Oxidizing Compound,  
Permeable to membranes 
Cause lipid peroxidation  
React with heme protein and thiols 
 

Hypochlorous acid 
(HClO) 

 

Oxidizing Compound  
Permeable to membranes 
Forms protein crosslinks  
Selectively react with thioester and thiols 
 

Singlet oxygen 
(1O2) 

 

Excited state and high-energy form of oxygen,  
React with majority of biomolecules 

Hydroxyl radical 
(OH˙) 

 

Lead to protein denaturation, lipid peroxidation, and enzyme inactivation 
Highly reactive with majority of biomolecules 

Superoxide 
(O˙- 2) 

 

Form hydroxyl radical via Fenton reaction 
Limited membrane permeability and biological reactivity 
Oxidizes and reduces hemoglobin 
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1.3.2. Antioxidant enzymatic system 

 The primary function of endogenous antioxidative enzymes is to maintain the redox 

balance during oxidative stress in the cells/erythrocytes. The main endogenous antioxidative 

enzymes are superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase 

(GR) and catalase (CAT) in the erythrocytes. All these enzymes provide protection against ROS 

via scavenging superoxide radicals and hydrogen peroxide, changing them to less reactive species 

(Figure 1.2. and 1.3) (Pandey and Rizvi 2010; Fibach and Rachmilewitz 2008). 

SOD catalyzes the conversion of superoxide anion (O-2) to hydrogen peroxide (H2O2). As 

mentioned earlier, H2O2 is ROS and not a radical, though it is quickly converted to hydroxyl radical 

(•OH) by Fenton reaction. The hydroxyl radicals are extremely reactive with many biomolecules 

and are responsible for most of the cellular damage. SOD is one of the most important endogenous 

antioxidant enzymes and protects cells from ROS (Pandey and Rizvi 2010; Fibach and 

Rachmilewitz 2008; Winterbourn 1985). 

Glutathione peroxidase (GPx) counteracts hydrogen peroxide (H2O2) by using hydrogens 

from two GSH (reduced glutathione) molecules and forming two water molecules and one GSSG 

(oxidized glutathione). The enzyme glutathione reductase (GR) then recycles GSH from GSSG 

using NADPH as a source of hydrogen (Pandey and Rizvi 2010; Fibach and Rachmilewitz 2008). 

 Catalase enzyme is another vital part of the enzymatic defense system in the cell. Catalase 

is the most active enzyme present in nature (Pandey and Rizvi 2010). The enzyme shows high 

affinity for H2O2 and thus degrade H2O2 into water rapidly before it can diffuse to the other parts 

of erythrocytes. Catalase offers highly energy efficient mechanism to remove H2O2. Therefore, 

during energy deprivation environment, catalase neutralize H2O2 in an energy efficient manner 
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which results in the net gain of reducing equivalents and cellular energy. Hence, the activity of 

catalase is a critical biomarker of oxidative stress (Pandey and Rizvi 2010; Fibach and 

Rachmilewitz 2008) 
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Figure 1.2: Neutralization of reactive oxygen species by the endogenous antioxidant system in 
erythrocytes (Fibach and Rachmilewitz 2008).  
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Figure 1.3: Combined action of the endogenous antioxidant system (blue) to detoxifies reactive 
oxygen species (red) by endogenous in erythrocytes (Fibach and Rachmilewitz 2008). O-2: 
Superoxide anion; H2O2: Hydrogen peroxide; SOD: Superoxide dismutase; GPx: Glutathione 
peroxidase; GR: Glutathione reductase; GSH: Reduced glutathione; GSSG: Oxidized 
glutathione. 
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1.3.3. Oxidation of hemoglobin 

Hemoglobin is a solid source of generation of superoxide radicals in erythrocytes. There is 

a transfer of an electron between the heme iron and oxygen in oxygenated hemoglobin. When 

hemoglobin is oxygenated, the heme iron stays in the Fe2+ ferrous state. Though when hemoglobin 

auto-oxidizes, methemoglobin and superoxide radicals are formed. In normal physiological 

condition, the formation of methemoglobin (approximately, 3%) produces superoxide 

continuously and subsequently generates hydrogen peroxide and oxygen as byproducts of 

dismutation reaction. Hence, normal erythrocytes have a huge amount of the reducing enzyme 

SOD. To restore hemoglobin function, methemoglobin is reduced by the NADH methemoglobin 

reductase and NADH methemoglobin reductase (Gordon-Smith 1980; Winterbourn 1985).  

Due to excessive oxidation of hemoglobin, the globin protein of hemoglobin is denatured, 

condensed and precipitated. These denatured globin proteins in the hemoglobin are called, “heinz 

bodies.” The interaction between the xenobiotic (drug having oxidation properties) and 

hemoglobin is the crucial process, which is characterized by methemoglobin and heinz body 

formation and both of them are important biomarkers of oxidative hemolytic anemia (Gordon-

Smith 1980; Winterbourn 1985). 

 

1.3.4. Oxidation of erythrocytes membrane 

 The membranes in erythrocytes contain lipid bilayer. Due to the oxidative stress, the lipid 

peroxidation occurs. Lipid peroxidation, a free-radical chain reaction is augmented by ROS. 

During this process, unstable carbon radicals are generated from the fatty acids and rearrange to 

produce short alkanes and conjugated dienes. These short alkane and conjugated dienes then react 
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oxygen to form peroxyl radicals, and through abstraction of hydrogen abstraction, lipid 

hydroperoxides are formed. The oxidation products are highly reactive and undergo for further 

oxidation and form secondary oxidation products like 4-hydroxy-2-,3-trans-nonenal (HNE), 

malondialdehyde (MDA), or isoprostanes. The second oxidation products can lead to form protein 

cross-linking and thus denatures the protein. Thus, the formation of MDA is frequently used as a 

biomarker to examine the oxidative damage on lipids (Gordon-Smith 1980; Fibach and 

Rachmilewitz 2008; Pandey and Rizvi 2010).  

 

1.3.5. Eryptosis 

The suicidal death of erythrocytes is called eryptosis. It is a coordinated signaling pathway 

of certain events, which cause disposal of defective erythrocytes. As erythrocytes do not contain 

mitochondria and nucleus, they are devoid of the classical apoptotic pathway and apoptotic 

characteristics such as mitochondrial depolarization and condensation of nuclei. Also, the 

signaling pathways, which lead to eryptosis, are different from classical pathways of apoptosis 

(Figure 1.4).  However, eryptosis shares some traits of apoptosis-like cell shrinkage, cell 

membrane blebbing, and exposure of phosphatidylserine (PS) on the cell surface. Moreover, like 

apoptosis, in eryptosis, the defected cells are engulfed and degraded by macrophages (Lang et al. 

2012). Eryptosis is commenced by complex signaling pathways, which are comprised of: 1) 

increase in intracellular free calcium ion concentration, ceramide and, prostaglandin-E2 (PGE2); 

2) activation of caspases, kinases, ionic channels and calpain protease and 3) externalization of 

phosphatidylserine to the erythrocytes surface. Eryptosis can be caused due to osmotic shock, 

mechanical damage of erythrocytes and agents that induce energy depletion or generate oxidative 
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stress. The elevation of eryptosis is correlated with metabolic disease, genetic disorders and 

bacterial and viral infections (Aguilar-Dorado et al. 2014).  

Different eryptosis stimulators including oxidative stress, energy depletion, and 

hyperosmotic shock cause activation of Ca2+ permeable non-selective cation channels and trigger 

the intake of Ca2+ in erythrocyte. The increase in intraerythrocytic Ca2+ activates protease calpain, 

a cysteine endopeptidase, which degrades protein and ultimately promotes cell membrane 

blebbing. Moreover, the increment in cytosolic Ca2+ stimulates degeneration of phospholipid 

asymmetry of the cell membrane and causes phosphatidylserine exposure at the outer membrane 

leaflet of the erythrocyte. Externalization of PS is a signal to circulating macrophages to come and 

engulf the affected cells (Lang et al. 2006; Lang and Lang 2015). 
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Figure 1.4: Major events of eryptosis pathway (Lang and Lang 2015). 
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1.3.6. Pathway of oxidative stress in erythrocytes 

 In, erythrocytes the hemoglobin is converted to methemoglobin via auto-oxidation or in 

the presence of xenobiotic (usually drug which has redox and oxidative potential). During 

formation of methemoglobin, superoxide anions are formed. SOD converts superoxide anions to 

hydrogen peroxide, and hydrogen peroxide is detoxified via enzyme catalase. Apart from SOD 

and catalase, other endogenous antioxidants present in erythrocytes take care of ROS. However, 

if these endogenous antioxidants failed to detoxify ROS, damage to macromolecules, like lipid 

peroxidation, denaturation of hemoglobin and formation of heinz body and protein cross-linking 

occur which is irreversible and this leads to the lysis of erythrocytes (Pandey and Rizvi 2010; 

Gordon-Smith 1980; Winterbourn 1985). The pathway of oxidative stress leading to hemolytic 

toxicity is described in Figure 1.5. 
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Figure 1.5: Pathway leading to hemolysis caused by oxidative stress (Pandey and Rizvi 2010). 
The reactive oxygen species (red) are detoxified through the endogenous antioxidant system 
(blue). If the endogenous antioxidant system is failed to neutralize reactive oxygen species, 
macromolecule damage occurs. O-2: Superoxide anion; H2O2: Hydrogen peroxide; SOD: 
Superoxide dismutase. 
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1.4. DRUGS ASSOCIATED WITH OXIDATIVE HEMOLYTIC ANEMIA 

1.4.1. Ascorbic acid 

 Ascorbic acid (Figure 1.6) is given at higher doses to treat severe deficiency such as scurvy. 

High doses of ascorbic acid aid in the prevention of colds, the improved wound healing, and 

treatment of cancer (Vilter 1980). Literature reports incidents of hemolysis after higher doses of 

ascorbic acid in G6PDd erythrocytes (Rees et al. 1993; Udomratn et al. 1977; Huang et al. 2014). 

In vivo studies were done to investigate the effect of higher doses of ascorbic acid on G6PDd 

human erythrocytes. At larger doses, ascorbic acid-induced hemolysis of G6PDd human 

erythrocytes (Udomratn et al. 1977). Though at therapeutic dosages, there are no confirmations to 

disregard the use of ascorbic acid in patients with a G6PDd population (Youngster et al. 2010). 

 Literature also reports oxidative hemolysis caused by higher doses of ascorbic acid in 

patients having normal erythrocytes with no genetic defect (Ibrahim et al. 2006) and with 

hemoglobinopathies like sickle cell anemia and thalassemia (Arruda et al. 2013). Contrast to 

hemolytic incidences of ascorbic acid; reports also showed that ascorbic acid decreased the 

phenylhydrazine-induced oxidative hemolysis by inhibiting methemoglobin and heinz bodies 

formation caused by phenylhydrazine in erythrocytes (Claro et al. 2006; Biswas et al. 2005). Thus, 

the controversial effect of ascorbic acid is observed on hemolysis, and the exact mechanism and 

clinical significance of these findings are still unclear. 
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Figure 1.6: Structure of Ascorbic acid 

 

1.4.2. Dapsone 

Dapsone (DDS), an antibacterial and antiprotozoal agent, is used for the treatment of 

various disease conditions including dermatitis herpetiformis, Pneumocystis pneumonia in 

acquired immunodeficiency syndrome (AIDS) patient, leprosy, malaria and inflammation (Wolf 

et al. 2000; Ganesan et al. 2010). Several clinical reports confirm the hemotoxicity of DDS (Deps 

et al. 2012; Cha et al. 2016; Pamba et al. 2012; Barclay et al. 2011; Mitsides et al. 2014).DDS 

metabolites produced in the liver are believed to cause hemotoxic reactions (Figure 1.7). Earlier 

studies on the CYP-mediated metabolism of DDS had shown that CYP2C9, CYP2C19, CYP2E1, 

and CYP3A4, are mainly involved in the metabolism of DDS (Li et al. 2003; Ganesan et al. 2010).  

Dapsone causes hemotoxicity in normal as well as G6PDd populations and the mechanisms 

seem to induce changes to the membranes of erythrocyte membrane (McMillan et al. 2005). ROS 

is produced this drug, induces binding of oxidized and denatured hemoglobin to the cytoskeleton 

membrane of erythrocytes. These oxidative changes in the erythrocytes’ membrane lipids have 

been demonstrated to accelerate the removal of the damaged erythrocytes by macrophages, leading 

to hemolytic injury (McMillan et al. 2005). 
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Dapsone hydroxylamine (DDSNOH), is a potent hemotoxic metabolite of DDS (Grossman 

and Jollow 1988; McMillan et al. 1995) and has been linked to hemolytic toxicity of DDS in 

several in vitro and in vivo studies (Mitra et al. 1995; McMillan et al. 1995; Grossman et al. 1995; 

Grossman et al. 1992; McMillan et al. 1998). CYP2C9 and CYP2C8 isoforms of CYP enzymes 

cause the formation of dapsone hydroxylamine (Ganesan et al. 2010). DDSNOH induces 

methemoglobin, generates oxidative stress in human erythrocytes (Kramer et al. 1972; 

Albuquerque et al. 2015). It further depletes GSH, forms disulfide-linked hemoglobin polymers 

and disulfide-linked hemoglobin adducts on certain membrane skeletal proteins in rat and human 

erythrocytes (Grossman et al. 1992; McMillan et al. 1995). The literature suggests that the 

hemotoxicity associated with DDS depends on the metabolism of DDS, though exact metabolism 

and hemotoxic pathways of DDS are still unclear. 

 

 

Figure 1.7: Metabolism of DDS to DDSNOH 
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1.4.3. Metformin 

 Metformin (Figure 1.8.A) is an antidiabetic drug and, is used in first-line therapy for type 

II diabetes. There have been 14 million Americans which were administered metformin between 

2010 and 2012, indicating the widespread use of metformin among the diabetic population 

(Ruggiero et al. 2016). Metformin-induced hemolytic anemia in G6PDd patients have been 

reported in the literature (Ruggiero et al. 2016; Meir et al. 2003; Blum et al. 2011; Packer et al. 

2008; Kirkiz et al. 2014; Kamakshi 2014). Though the metformin-induced hemolysis is rare, and 

metformin is not incorporated in the list of drugs unsafe in G6PDd population, and it still is 

important to consider seriously. There is not known mechanism of metformin-induced hemolysis 

and a definitive association between G6PD enzyme activity, and metformin-induced hemolytic 

anemia is not known (Ruggiero et al. 2016). In practice, it would be not practical to screen patients 

started on metformin for G6PD deficiency; though a patient with known G6PD deficiency should 

be observed carefully, or prescription of metformin in patients with known G6PD deficiency need 

to be avoided (Ruggiero et al. 2016). No studies has been to understand the mechanism of 

hemotoxicity associated with metformin. 

 

1.4.4. Methylene blue 

 Methylene blue (methylthioninium chloride) (Figure 1.8.B) is a compound with multiple 

uses. It is mainly used for the treatment of methemoglobinemia induced by drugs. In addition, it is 

used for the treatment of various infections and poisoning in vivo. In vitro, it is used as a dye to 

stain tissues, bacterial cells, and DNA (McDonagh et al. 2013).  Methylene blue is an effective 

therapy to reduce methemoglobin back to hemoglobin. However, methylene blue is linked with 
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adverse hemolysis reactions in G6PDd individuals. Thus, methylene blue is contraindicated or 

advised precaution for use in G6PDd individuals due to a risk of hemolytic anemia (Youngster et 

al. 2010; Kamakshi 2014; McDonagh et al. 2013).  

Methylene blue causes reduction in methemoglobinemia via biliverdin reductase B 

(BLVRB) enzyme (Skold et al. 2011; Curry 1982; Wright et al. 1999). Methylene blue is reduced 

to leukomethylene blue by BLVRB enzyme, and during this reduction, BLVRB enzyme accepts 

electrons from NADPH (Curry 1982). Leukomethylene blue acts as an electron donor and reduces 

methemoglobin back to hemoglobin and converts to methylene blue in a redox cycle reaction 

(Curry 1982; Wright et al. 1999). On the contrary, methylene blue is an oxidizing agent; it can 

cause methemoglobinemia at high concentrations. Methylene blue causes hemolysis by oxidizing 

hemoglobin, oxidizing GSH to GSSG and forming heinz bodies (Sills and Zinkham 1994; Kelner 

and Alexander 1985). However, the exact pathway of methylene blue-induced hemolysis is still 

unknown.  

The mechanism of action of methylene blue to reduced methemoglobin back to 

hemoglobin depends on the intracellular capacity for NADP/NADPH recycling of the 

erythrocytes. The pentose phosphate pathway is the only source of NADPH in erythrocytes, 

methylene blue treatment to reduce methemoglobin back to hemoglobin relies on G6PD enzyme 

activity. Moreover, methylene blue has been linked to exacerbating oxidative stress in G6PDd 

erythrocytes. Thus, methylene blue is an inappropriate treatment option for methemoglobinemia 

in G6PD-deficient individuals (McDonagh et al. 2013). 
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Figure 1.8: Structure of (A) metformin and (B) Methylene blue. 

1.4.5. Nitrofurantoin 

 Nitrofurantoin (NFT) is the drug of choice for treatment and prophylaxis of acute 

uncomplicated lower urinary tract infections because of minimum resistance, the lower tendency 

of collateral damage and high efficacy (Colgan and Williams 2011; Gupta et al. 2011; Shakti and 

Veeraraghavan 2015). NFT also causes severe hemolytic anemia in glucose-6-phosphate 

dehydrogenase (G6PD) deficient populations. This limits the use of NFT for these patients (Gait 

1990; Shakti and Veeraraghavan 2015). Moreover, evidence shows the hydroxylation of NFT 

(Jonen 1980) and formation of aminofurantoin metabolite of NFT in rat (Aufrere et al. 1978). In 

addition, aminofurantoin, a reductive metabolite of NFT is detected in human urine as well 

(Hoener and Patterson 1981). Thus, aminofurantoin is the only known human metabolite of NFT. 

However, recent data suggest that nitrofurantoin is metabolized through CYP450 system and 

generate 1-aminohidantoin in rat (Aracena et al. 2014). These data suggest that metabolism of NFT 

occurs through both reductive and oxidative pathway. However, the knowledge about the 

pathways for metabolism of NFT, namely type of CYP isoforms and identity of the metabolites, 

is still unclear and incomplete. 
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A preliminary study with normal blood cells showed that NFT increased methemoglobin 

formation and hydrogen peroxide generation, whereas cellular levels of GSH and ATP were 

decreased (Dershwitz et al. 1985). NFT reversibly inhibits glutathione reductase (GR) in rat 

hemolysates, hepatocytes and human hemolysates (Buzard et al. 1960; Rossi et al. 1988). The 

redox cycling and nitro reduction ability of NFT is known to be associated with its hepatic and 

pulmonary toxicity. The one electron reduction of the 5-nitro group in NFT, produces nitro radical 

anions and furthermore generates superoxide, hydrogen peroxide (H2O2) and highly reactive 

hydroxyl radical (Figure 1.9). Thus, the potential of NFT for the formation of ROS seems to cause 

cytotoxicity but is not the only factor to cause toxicity (Minchin, Ho, and Boyd 1986; Wang et al. 

2008). The mechanism of hemolytic toxicity of NFT in G6PDd patient is still unknown, but in 

normal erythrocytes, the challenge with NFT is that it increases MtHb formation and H2O2 

generation with decreases in cellular levels of GSH and ATP (Dershwitz et al. 1985). However, 

no investigations have been done in G6PDd erythrocytes in vitro and in vivo to follow the 

hemolytic response and mechanism for the hemolytic toxicity of NFT. Thus, the hemolytic 

mechanism induced by NFT is still not clear and unknown. 
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Figure 1.9: Redox cycling of NFT and generation of reactive oxygen intermediates (Wang et al. 
2008; Gupta et al. 2011) 
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1.4.6. Nalidixic acid 

 Nalidixic acid (Figure 10.A) is an antibacterial belonging to the quinolone class. The likely 

adverse effect of nalidixic acid in general population is hemolytic anemia. There were three 

reported cases of hemolysis in G6PDd individuals induced by nalidixic acid and accordingly there 

is a caution concerning the use of nalidixic acid in G6PDd patients (Youngster et al. 2010).  

The photosensitized hemolytic lysis caused by nalidixic acid was investigated by 

(Fernandez and Cardenas 1990; Fernandez et al. 1987). The nalidixic acid-induced photo-

hemolysis was oxygen-dependent. The effects of numerous antioxidants and hydroxyl radical 

scavengers on nalidixic-induced photo-hemolysis indicated a photo-oxidative step. Furthermore, 

it was found that the nalidixic acid was the reason of hemolysis, yet the photoproducts for nalidixic 

acid showed a greater potential of photo-hemolysis rather than nalidixic acid itself  (Fernandez et 

al. 1987; Fernandez and Cardenas 1990). However, the exact mechanism photosensitized 

hemolytic lysis caused by nalidixic acid is still not complete. 

 

1.4.7. Phenazopyridine 

Phenazopyridine (Figure 10.B) is an azo dye and has analgesic properties. It is frequently 

given with antibacterial therapy for urinary tract infection as it aids to relieve pain and discomfort 

(urgency, frequency) before antibacterial controls the infection. This drug is available through 

prescription as well as over the counter (Cornwell and Bartek 1996).  

Literature shows that phenazopyridine caused severe hemolysis in G6PDd patients (Tishler 

and Abramov 1983; Galun et al. 1987). Phenazopyridine has been associated with 

methemoglobinemia, heinz body formation in erythrocytes in patients with overdose or having 
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renal insufficiency (Cornwell and Bartek 1996; Yu et al. 2011; Noonan et al. 1983; Terrell et al. 

1988). Though it should be noted that hemolysis has been linked with patients with no G6PDd too 

(Cornwell and Bartek 1996; Yu et al. 2011; Youngster et al. 2010; Terrell et al. 1988). The 

hemotoxicity of phenazopyridine is linked with its metabolism. A metabolite phenazopyridine 

namely,  2,3,6-triaminopyridine, autoxidizes at neutral pH and produces superoxide radical and 

hydrogen peroxide and thus may be responsible for hemolytic anemia caused by phenazopyridine 

(Munday and Fowke 1994). The knowledge of the mechanism associated with phenazopyridine 

induced hemolysis is not clear. 

 

Figure 1.10: Structure of (A) nalidixic acid and (B) phenazopyridine. 

1.4.8. Primaquine 

 Primaquine (PQ), belongs to a drug class 8-aminoqinoline (8-AQ) and is a potential 

antiprotozoal agent. It is mainly used for prophylaxis and treatment of malaria. PQ is the only drug 

approved by FDA, and acts against the hard-to-kill liver stage of Plasmodium vivax and P. oval 

and used to prevent malaria relapse (Ashley et al. 2014; Tekwani and Walker 2006). Relapses are 

significantly responsible for the morbidity in P. vivax and P. ovale malaria (Leslie et al. 2016). PQ 
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also acts against mature P5 P. falciparum gametocytes and thus WHO recommends PQ for 

prevention of malaria transmission.  

 PQ causes severe hemolytic reactions in individuals with a genetic deficiency of glucose-

6-phosphate dehydrogenase (G6PD) (Ashley et al. 2014) and the G6PD deficiency was discovered 

due to PQ-induced hemotoxicity in 1950. The understanding of PQ metabolism has been greatly 

expanded in the last six years. The metabolism of PQ mainly depends on two metabolizing 

enzymes, namely CYP 2D6 and MAO-A (Figure 1.11). The in vitro studies of PQ, showed that all 

CYP isoforms (CYP 2D6, MAO-A, CYP 2C19, and CYP 3A4) have capability to metabolize 

primaquine to some extent (Pybus et al. 2012). The phenolic metabolites related with redox cycling 

(Vasquez-Vivar and Augusto 1992) were  mainly the products of CYP 2D6 metabolism (Pybus et 

al. 2012; Fasinu et al. 2014). Further knockout mice studies demonstrated that the formation 

phenolic metabolites of PQ was reduced in CYP 2D knockout mice (Potter et al. 2015).The MAO-

A enzyme causes the formation of a primaquine aldehyde species carboxyprimaquine, which is 

the most abundant plasma metabolite of PQ in the humans (Pybus et al. 2012; Fasinu et al. 2014).  

Several studies have been done to understand the hemolytic toxicity of the PQ in vitro and 

in vivo (Vasquez-Vivar and Augusto 1992, 1994; Bolchoz et al. 2001; Bolchoz et al. 2002b; 

Bolchoz et al. 2002a; Bowman et al. 2004; Bowman et al. 2005b; Bowman et al. 2005a; Ganesan 

et al. 2009; Ganesan et al. 2012). It is well established that the hemolytic anemia and efficacy of 

PQ is hepatic metabolism-dependent (Ganesan et al. 2012; Ganesan et al. 2009; Fasinu et al. 2014; 

Pybus et al. 2012; Pybus et al. 2013). The hemotoxic effect of PQ in the presence of human liver 

microsomes (HLM), mouse liver microsomes (MLM) and recombinant human-CYPs isoforms in 

normal and G6PDd human erythrocytes was analyzed (Ganesan et al. 2009; Ganesan et al. 2012). 
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The studies showed that in the presence of HLM, PQ-induced methemoglobin (MtHb) formation, 

reactive oxygen species (ROS) generation, and depletion in thiols in human erythrocytes (Ganesan 

et al. 2009; Ganesan et al. 2012). Multiple CYP isoforms (CYP1A2, CYP2E1, CYP2B6, CYP2D6, 

and CYP3A4) were found to mediate the metabolism of PQ and cause PQ-associated hemotoxicity 

in human erythrocytes (Ganesan et al. 2009). Recent studies revealed that the production of 5-

hydroxy primaquine and other phenolic metabolites of PQ depend on of CYP 2D6-mediated 

metabolism (Fasinu et al. 2014; Pybus et al. 2012; Pybus et al. 2013; Potter et al. 2015). However, 

the exact hemotoxic mechanism due to PQ in erythrocytes is still unclear (Marcsisin et al. 2016). 
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Figure 1.11: Metabolism of PQ via CYP2D6 and MAO-A pathway. cPQ: carboxyprimaquine, 
(2HPQ): 2-hydroxyprimaquine, 3HPQ: 3-hydroxyprimaquine, 4HPQ: 4-hydroxyprimaquine, 5-
HPQ: 5-hydroxyprimaquine and 5,6-OQPQ: 5,6-orthoquinone-primaquine. 
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1.4.9. Rasburicase 

 Rasburicase is a recombinant urate oxidase used for the prevention and treatment of 

hyperuricemia associated with hematological malignancies (Pui 2002; Goth 2008). Rasburicase 

caused hemolytic anemia in G6PDd patients. Rasburicase has oxidizing potential and converts uric 

acid with high affinity into allantoin, which is removed by the kidneys. During this conversion, a 

high concentration of hydrogen peroxide is generated which might is responsible for the hemolysis 

in G6PDd and catalase enzyme deficiency (Goth 2008; Ibrahim et al. 2017). Moreover, due to the 

oxidizing property of rasburicase, the ferrous form of iron in erythrocytes is converted to ferric 

form resulting in the formation of methemoglobin, which makes the heme component incapable 

of carrying oxygen (Ibrahim et al. 2017). Rasburicase induced robust methemoglobin formation 

in G6PDd and catalase deficient patient and thus methemoglobin is used as a biochemical marker 

in laboratories to determine hemolysis caused by this drug (Elinoff et al. 2011; Cheah et al. 2013; 

Ng et al. 2012; Bucklin and Groth 2013; Ibrahim et al. 2017).  

 

1.4.10. Sulfacetamide  

Sulfacetamide is a sulfonamide and have anti-infectious properties. Currently, it is 

primarily used in topical formulations. Sulfacetamide has the theoretical potential to induce 

hemolysis in G6PDd patients, but the literature search showed no reported cases. It seems that 

sulfacetamide can be used safely in G6PDd patients in topical formulations (Youngster et al. 

2010). 

 

1.4.11. Sulfamethoxazole  
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 Sulfamethoxazole is used sulfonamide antibacterial and comes in combination with 

trimethoprim. The combination of trimethoprim and sulfamethoxazole is called cotrimoxazole. 

Several reports suggest the hemolysis caused trimethoprim-sulfamethoxazole or sulfamethoxazole 

alone in G6PDd erythrocytes (Chisholm-Burns et al. 2010; Chan and Wong 1975; Reinke et al. 

1995; Chan 1997; Chan 1972; Owusu 1972). However, in some clinical studies the effect of 

trimethoprim-sulfamethoxazole or sulfamethoxazole alone in G6PDd erythrocytes is inconclusive 

(Chan and McFadzean 1974; Lexomboon and Unkurapiana 1978). 

 

1.4.12. Sulfanilamide 

Sulfanilamide is a short-acting sulfonamide with antibacterial properties (Barkan and 

Goldsmith 1946; Youngster et al. 2010). Several clinical reports suggest that sulfanilamide induces 

hemolysis in G6PDd erythrocytes and the hemolysis is the cause of oxidative properties and redox 

potential of this drug (Ali et al. 1999; Barkan and Goldsmith 1946; Naiman 1964; Heeres and 

Zondag 1961). The oxidant and reduced forms of sulfanilamide have antibacterial potential. 

Moreover, the reduction and oxidation of sulfanilamide are reversible (Barkan and Goldsmith 

1946). In a study, Ali et al. suggested that sulfanilamide caused concentration-dependent GSH 

depletion selectively in G6PDd erythrocytes as compared to normal erythrocytes (Ali et al. 1999). 

Early reports suggest the hemolysis in G6PDd erythrocytes individuals, however, the dose is four 

times higher than the therapeutic dose. No hemolysis reports were found at a therapeutical dose of 

sulfanilamide in G6PDd population (Youngster et al. 2010). 
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Figure 1.12: Structure of (A) sulfacetamide, (B) sulfamethoxazole and (C) sulfanilamide. 

 

1.5. CONCLUDING REMARKS  

The detrimental effects of oxidative stress are caused due to the uncontrolled generation of 

ROS. ROS play a vital role in hemolysis initiation (Fibach and Rachmilewitz 2008). Drugs that 

has redox potential and oxidative properties are capable of forming methemoglobin. During 

methemoglobin formation, superoxide radical and ions are produced (Gordon-Smith 1980; 

Winterbourn 1985). To detoxify this ROS the endogenous antioxidant enzymes like SOD, GR, 

GPx and catalase play a crucial role. However, if these endogenous antioxidants are not able to 

take care of ROS, lipid peroxidation, protein crosslinking and denaturation occurs (Fibach and 

Rachmilewitz 2008; Pandey and Rizvi 2010). These biochemical, molecular and cellular 

parameters which are affected and modified during hemolysis caused by oxidative stress serve 

excellent biomarkers to examine the extent of oxidative damage, and aid to assess hemolysis 

related changes (Pandey and Rizvi 2010). 

The knowledge associated with the mechanism and pathways of drug-induced oxidative 

hemolysis is limited. Further studies, to identify early and late (eryptotic) hemotoxic marker and 

studies to understand the oxidative hemotoxic pathway in the erythrocytes are needed to be done. 
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The knowledge generated by these studies can be used to build a strategy to mitigate drug-induced 

oxidative hemolysis.  
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CHAPTER 2 

EVALUATION OF EARLY AND LATE BIOCHEMICAL AND CELLULAR CHANGES 

TRIGGERED BY PRIMAQUINE METABOLITES IN NORMAL AND GLUCOSE-6-

PHOSPHATE DEHYDROGENASE  DEFICIENT HUMAN ERYTHROCYTES 

 

2.1. INTRODUCTION 

Currently, primaquine (PQ), an 8-aminoquinoline (8-AQ), is the sole FDA-approved drug, 

which acts against the hard-to-kill hypnozoites stage of Plasmodium vivax and P. ovale and used 

to prevent malaria relapse (Ashley et al. 2014; Tekwani and Walker 2006). Relapses are significant 

contributors to infection and morbidity in P. vivax and P. ovale malaria (Leslie et al. 2016). PQ 

also acts against mature P5 P. falciparum gametocytes and thus WHO recommends PQ for 

prevention of malaria transmission (Tekwani and Walker 2006; Ashley et al. 2014). 8-AQs also 

have a potential therapeutic use for treatment of other protozoal infections namely, leishmaniasis 

and trypanosomiasis as well as pneumocystis infections (Tekwani and Walker 2006). However, 

PQ causes severe hemolytic reactions in individuals with a genetic deficiency of glucose-6-

phosphate dehydrogenase (G6PD) (Ashley et al. 2014). G6PD deficiency is the most common 

enzymopathy with more than 400 million cases worldwide and is frequent in malaria endemic 

countries (Mason et al. 2007; Youngster et al. 2010). PQ-induced hemotoxicity in G6PD deficient 

(G6PDd) population precludes the use of PQ for much- needed malaria control and elimination 

efforts and necessitates the development of 8-AQ analogs with better safety. 
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Numerous studies have explored the hemolytic toxicity of the PQ in vitro and in vivo 

(Vasquez-Vivar and Augusto 1992, 1994; Bolchoz et al. 2001; Bolchoz et al. 2002b; Bolchoz et 

al. 2002a; Bowman et al. 2004; Bowman et al. 2005b; Bowman et al. 2005a; Ganesan et al. 2009; 

Ganesan et al. 2012). It is well established that the hemolytic anemia and efficacy of PQ is hepatic 

metabolism-dependent (Ganesan et al. 2012; Ganesan et al. 2009; Fasinu et al. 2014; Pybus et al. 

2012; Pybus et al. 2013). Recent studies revealed that the production of 5-hydroxy-primaquine (5-

HPQ) and other phenolic metabolites of PQ depend on of CYP 2D6-mediated metabolism (Fasinu 

et al. 2014; Pybus et al. 2012; Pybus et al. 2013; Potter et al. 2015). The 5-HPQ is capable of redox 

cycling back and forth to the corresponding quinone-imine. The 5-HPQ and corresponding 

quinone-imine species, in the presence of water, form the stable 5,6-orthoquinone primaquine (5,6-

OQPQ) (Figure 2.1) (Marcsisin et al. 2016). 

Previous studies showed that PQ undergoes hepatic metabolism and induces accumulation 

of methemoglobin, generates reactive oxygen species (ROS) leading to oxidative stress and also 

cause depletion of GSH in human erythrocytes (Ganesan et al. 2009; Ganesan et al. 2012). This 

hypothesis is consistent with several other in vitro studies done with 5-HPQ and 6-methoxy-8-

hydroxylaminoquinoline (MHQ) in rat erythrocytes (Bolchoz et al. 2001; Bolchoz et al. 2002a; 

Bowman et al. 2004; Bowman et al. 2005a). In G6PDd erythrocytes absence of G6PD enzyme 

compromises the capacity to regenerate NADPH and recycle GSH. The G6PDd erythrocytes also 

have compromised the ability for detoxification of ROS. Thus, three biomarkers, described above 

are demonstrated as the potential biochemical markers for hemolytic response in human 

erythrocytes.  
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Figure 2.1: Metabolism of PQ to 5-hydroxy-primaquine (5-HPQ) through CYP2D6, and redox 
cycling of 5-HPQ to its corresponding quinone imine and ortho-quinone. The figure is adapted 
from (Marcsisin et al. 2016). 
 

Recent reports have shown that the erythrocytes subjected to the hemolytic response due 

to pathophysiological factors or external insults; undergo specific biochemical and cellular 

changes. These changes have been collectively referred as eryptosis, which is similar to apoptosis 

in nucleated eukaryotic cells (Lang et al. 2006; Lang et al. 2012).  As erythrocytes do not contain 

mitochondria and nucleus, they are devoid of the classical apoptotic pathways and apoptotic 

characteristics such as mitochondrial depolarization and condensation of nuclei. The signaling 

pathways, which lead to eryptosis, are different from classical pathways of apoptosis.  However, 

eryptosis shares some traits of apoptosis-like cell shrinkage, cell membrane blebbing, and exposure 

of phosphatidylserine (PS) on the cell surface. Eryptosis could be induced by the agents that cause 

oxidative stress (Lang et al. 2006; Lang et al. 2012). Exposure to PQ generates severe oxidative 

stress in erythrocytes (Ganesan et al. 2009), which is presumably triggered by the PQ metabolites 

produced through CYP-mediated pathways.  In normal individuals’ presence of a G6PD, the 

enzyme in pentose phosphate pathway, generate NADPH and formation of GSH is not 

compromised and thus, oxidative stress has been taken care. Nevertheless, in G6PD deficiency, 
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the capability of coping with oxidative stress is compromised (Judith Recht 2014). The events 

involved in eryptosis, commit the damaged erythrocyte to be removed from the circulation through 

extravascular mechanisms. The exposure of PS on the outer membrane is the ultimate commitment 

of erythrocyte to be phagocytized by the macrophages (Lang et al. 2012).   

 

2.2. HYPOTHESIS 

 Phenolic and quinone metabolites, generated through CYP-mediated pathways are 

responsible for the hemolytic toxicity of PQ. These metabolites cause selective changes in early 

and late biochemical markers of hemolytic toxicity in G6PDd erythrocytes as compared to normal 

erythrocytes. 

 

2.3. OBJECTIVE 

 The purpose of this study was to understand the mechanism of hemolytic toxicity of PQ 

through evaluation of key biochemical parameters namely, the accumulation of methemoglobin 

(MtHb), generation of oxidative stress and the levels of reduced glutathione (GSH). These 

parameters were monitored in normal and G6PDd erythrocytes treated with PQ metabolites. 

Changes in cellular markers associated with eryptosis were analyzed as late biomarkers of 

hemotoxic response. The metabolites were tested for a dose-dependent hemolytic response. 

 

2.4. MATERIALS AND METHODS. 

2.4.1. Chemicals 

 2,7-Dichlorofluorescein diacetate (DCFDA), betulinic acid, D-(+)-glucose and tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) were purchased from Sigma–Aldrich (St. Louis, 
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MO, USA). GSH-Glo™ Glutathione Assay kit and Annexin V-FITC Apoptosis Detection kit were 

purchased from Promega (Madison, WI, USA) and Abcam (Cambridge, MA, USA) respectively. 

5-hydroxy-primaquine (5-HPQ), 5,6-orthoquinone-primaquine (5,6-OQPQ) and 6-methoxy-8-

hydroxylaminoquinoline (MAQ-NOH or MHQ) were synthesized by Dr. N.P. Dhammika.  

Nanayakkara at the National Center for Natural Products Research (NCNPR), University of 

Mississippi (Fasinu et al. 2014). The 5-HPQ is relatively unstable compound and undergo rapid 

spontaneous oxidation. Time-lapse LC-MS analysis suggested the in the solution 5-HPQ instantly 

converted to quinone-imine and 5,6-orthoquinone analog. Other reagents used were of highest 

purity grade available.  

 

2.4.2. Procurement of human blood 

 Blood was drawn from normal and glucose 6-phosphate dehydrogenase deficient (G6PDd) 

healthy volunteers under an IRB approved protocol and stored at 4 0C. To analyze early biomarkers 

of hemolytic response (MtHb formation, ROS generation, GSH and total glutathione estimation) 

of 5-HPQ and 5,6-OQPQ, the G6PDd blood taken from an African American male carrying the 

classic A/A- a combination of electrophoretic variant (Asn126Asp) and deficiency allele 

(Val68Met) was used. To determine the hemolytic response of MHQ, G6PDd blood was obtained 

a Caucasian male containing the Ser188Phe Mediterranean mutation was used. To evaluate 

phosphatidylserine exposure, the late eryptosis response, induced by 5,6-OQPQ, G6PDd blood 

taken from an African American male carrying the classic A/A- a combination of electrophoretic 

variant (Asn126Asp) and deficiency allele (Val68Met) was used. 
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2.4.3. Preparation of erythrocytes for hemotoxicity assays 

The normal and G6PDd blood were centrifuged at 4500 g at 4 ◦C for 10 minutes, and buffy 

coats were removed. The erythrocyte pellets were washed twice with chilled phosphate buffered 

saline (110 mM sodium chloride, 20 mM disodium hydrogen phosphate and 4 mM potassium 

dihydrogen phosphate, pH 7.4) with 10 mM glucose (PBSG). The washed erythrocytes pellets 

were suspended at 50% hematocrit in chilled PBSG. 

 

2.4.4. In vitro hemotoxic assays 

The in vitro hemotoxic assays were adapted from an earlier in vitro metabolism-linked 

hemotoxicity assay (Ganesan et al. 2012; Ganesan et al. 2009). In these assays, different 

biochemical, molecular and cellular changes, which have been linked to oxidative hemotoxicity 

were measured. The hemotoxic assays namely, the formation of methemoglobin, generation of 

ROS, levels of intraerythrocytic GSH and total glutathione were measured as early hemotoxic 

biomarkers. Externalization of PS on the outer membrane of erythrocytes was measured as a late 

eryptotic biomarker. The PQ metabolites 5-HPQ, 5,6-OQPQ and MHQ were tested at the 

concentrations ranging from 3.125 to 25 µM. The structures of PQ, 5-HPQ, 5,6-OQPQ and MHQ 

are shown in Figure. 2.2  

 
2.4.4.1. Methemoglobin formation assay  

The reaction mixture contained 50 µl erythrocytes suspended in PBSG with 50% 

hematocrit, 2.5 µl of test metabolite (5-HPQ, 5,6-OQPQ or MHQ) and PBSG to make a final 

volume of reaction mixture to 200 µl. The reaction mixture with appropriate control without test 

drug was also set up simultaneously. Each assay was set up at least in duplicates. The reaction 
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mixtures were incubated for 1 hour at 370C in a shaking water bath. After incubation, samples 

were kept on ice and methemoglobin levels were measured by a Co-Oximeter (IL-682). 

 

 
Figure 2.2: Structure of primaquine (PQ) and its metabolites. 5-HPQ (5-hydroxy-primaquine), 5, 
6-OQPQ (5, 6-orthoquinone of primaquine) and MHQ (6-methoxy-8-hydroxylaminoquinoline). 
  

2.4.4.2. Reactive oxygen species (ROS) formation (oxidative stress kinetics assay) 

This assay was performed in clear flat bottom 96 well plates. The washed normal and 

G6PDd erythrocytes (50% hematocrit) were loaded with DCFDA, a fluorescent ROS probe. The 

PBSG washed erythrocytes (50% hematocrit) were incubated with 600 µM DCFDA at 37 0C for 

20 min and centrifuged at 4500 X g for 10 minutes. The DCFDA loaded erythrocytes pellet was 

resuspended in PBSG to 50% hematocrit and used for the ROS formation assay. The reaction 

mixtures contained 100 µL DCFDA loaded erythrocytes (50% hematocrit) and 2 µl test drug 

(3.125 µM - 25 µM). Appropriate control without test drug was also set up at the same time. The 

plate was read for 2 (every 5 minutes) hours at 370C on a fluorescence microplate reader for kinetic 

measurement of fluorescence (excitation 488 nm and emission 535 nm). The data were recorded 

as relative fluorescence units (RFU), and the time-dependent increase in fluorescence was 

calculated in Excel software. 
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2.4.4.3. Estimation of intraerythrocytic reduced glutathione (GSH) and total glutathione 

levels. 

The initial reaction set up for GSH, and total glutathione estimation assay was similar to 

that for the methemoglobin formation assay described above. The estimation of GSH and total 

glutathione was done with GSH-Glo™ Glutathione Assay Kit (Promega). To prepare the samples 

for GSH and total glutathione a 5 µl aliquot was mixed with 20 µl GSH-Glo buffer and kept on 

ice for at least 20 minutes. The samples were centrifuged at 10650 X g for 10 min at 4 0C. The 

supernatants were transferred to separate tubes, and 225 µl of distilled water was added to the 

supernatants. The samples were vortexed and used for intraerythrocytic GSH and total glutathione 

determination. Aliquots of 2.5 µl from each sample were transferred to a fresh 96 wells microplate 

and 25 ml GSH-Glo reagent was added to each well. The plate was incubated for 30 min at 25°C 

on a shaker. Luciferin detection reagent (25 µl) was added to each well and plate was further 

incubated for 15 min at room temperature on a shaker. Luminescence was read at 100 integrations 

on a luminescence microplate reader. Aliquots (2.5 µl each) from the reaction mixtures were mixed 

with 2.5 µl tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (final concentration 500 µM) and 

incubated with 25 µl GSH-Glo reagent for 30 min at 25°C on a shaker. TCEP was used to reduce 

all glutathione into GSH (Winther and Thorpe 2014). The remaining experimental method was 

similar to the GSH determination assay. Reduced glutathione at 6.25 µM was used as a standard. 

The data was obtained as relative luminescence unit (RLU). To calculate GSH and total glutathione 

in blood following formula was used. The concentration of GSH or total glutathione (µmoles/mL 

blood) 
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= (𝑅𝐿𝑈 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ 25 ∗ 2.5 ∗ 50 ∗ 400 ∗ 5)/(RLU of standard X 

1000 X 1000) 

 

2.4.4.4. Evaluation of phosphatidylserine exposure (Annexin V binding assay). 

The externalization of phosphatidylserine was evaluated by flow cytometric assays using 

Annexin V-FITC Apoptosis Detection kit, Abcam. The annexin V shows high affinity for exposed 

phosphatidylserine on the cell surface, and thus it is used as a probe to detect the 

phosphatidylserine externalization. To prepare the samples, 50 µl of the washed normal and 

G6PDd erythrocytes (suspended in PBSG with 50% hematocrit) were treated with 2.5 µl 

metabolite. PBSG was added to make a final volume of reaction mixture to 250 µl. Samples were 

incubated for 24 hours at 37 0C in a shaking water bath. After incubation, the aliquots containing 

1×106 erythrocytes were removed and centrifuged at 4500 X g for 10 min at 4 0C. The supernatants 

were removed. The erythrocytes’ pellets were resuspended in 500 µL of binding assay buffer and 

5 µL Annexin-FITC binding dye was added. The reaction mixtures were incubated for 5 minutes 

at room temperature in the dark.  Annexin V-FITC binding was analyzed by flow cytometry 

(excitation = 488 nm; emission = 530 nm) using FITC signal detector (FL1). Data were recorded 

for 10,000 events per sample. Betulinic acid (10 µM) was used as a positive control in this assay. 

Betulinic acid, a pentacyclic lupane-type triterpene derivative of botulin, is isolated from the bark 

of Betula pubescens. Treatment of human erythrocytes in vitro treatment with betulinic acid 

induces eryptosis via membrane permeabilization and phosphatidylserine externalization 

(Macczak et al. 2016). The data was obtained as mean fluorescence and mean fluorescence of M2 

population was used for analysis. 
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2.4.5. Statistical analysis. 

Multiple comparisons among groups mean were analyzed by two-way ANOVA followed 

by Tukey’s post hoc tests using GraphPad Prism® version 7.3. The p values <0.05 were considered 

as significant difference. Data are presented as a mean ± standard error (SE). 

 

2.5. RESULTS 

2.5.1. Methemoglobin formation 

 The washed normal and G6PDd human erythrocytes were incubated with the test 

compounds at 37 0C for an hour and then analyzed with Co-oximeter to determine methemoglobin. 

Exposure of erythrocytes to oxidative reactions converts the Fe+2 oxyhemoglobin to Fe+3 

methemoglobin, which loses the oxygen carrying capacity. The increase in blood methemoglobin 

levels, referred as methemoglobinemia, is an important diagnostic marker for oxidative stress. 

Treatment of human erythrocytes with 5-HPQ, 5,6-OQPQ, and MHQ in vitro caused a robust and 

concentration-dependent increase in methemoglobin formation in normal and G6PDd human 

erythrocytes (Figure 2.3). Treatment with 5-HPQ produced a significant increase in 

methemoglobin levels in normal erythrocytes at 12.5 and 25 µM (p< 0.001 and p< 0.001 

respectively), as compared to vehicle control. Similarly, 5-HPQ treatment significantly increased 

methemoglobin in G6PDd erythrocytes at 6.25, 12.5 and 25 µM (p< 0.05, p< 0.0001 and p< 0.0001 

respectively) as compared to vehicle control. The increase in methemoglobin level due to 5-HPQ 

treatment was almost similar in normal and G6PDd human erythrocytes at all the concentration 

levels tested, except at 25 µM, which caused a statistically significant increase in methemoglobin 

in G6PDd erythrocytes compared to normal (p< 0.01) (Figure 2.3.A).  
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Similarly, 5,6-OQPQ treatment also produced concentration-dependent increase in   

methemoglobin level, which was statistically significant at the concentration levels tested at 6.25, 

12.5 and 25 µM as compared to the vehicle control, both in normal (p< 0.001, p< 0.0001 and p< 

0.0001 respectively) and G6PDd (p< 0.0001, p< 0.0001 and p< 0.0001 respectively) human 

erythrocytes (Figure 2.3.B). Again, the increase in methemoglobin level due to 5,6-OQPQ 

treatment was almost similar in normal and G6PDd human erythrocytes at all the concentration 

levels tested. 

The des-alkylated PQ metabolite MHQ, also produced significant increase in 

methemoglobin at 6.25, 12.5 and 25 µM, MHQ, as compared to vehicle control, both in normal 

(p< 0.001, p< 0.0001 and p< 0.0001 respectively) and G6PDd (p< 0.01, p< 0.0001 and p< 0.0001 

respectively) human erythrocytes (figure 2.3.C). The methemoglobin formation induced by MHQ 

was statistically not different in normal and G6PD deficient erythrocytes. However, at the highest 

concentration, methemoglobin formation induced by MHQ was significantly lower compared to 

that induced due to the treatment with 5-HPQ and 5,6-OQPQ, both in normal (p< 0.01 and p< 

0.0001 respectively) and G6PDd erythrocytes (p< 0.0001 and p< 0.0001 respectively).  
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Figure 2.3: Methemoglobin formation in normal and G6PDd human erythrocytes due to treatment 
with (A) 5-HPQ, (B) 5,6-OQPQ and (C) MHQ. Each data point represents mean ± SE of at least 
duplicate observations. The results were statistically analyzed with GraphPad Prism® with two-
way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered 
as statistically significant.  **p < 0.01 compared with G6PDd erythrocyte with corresponding 
concentration. 
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2.5.2. Generation of reactive oxygen species (ROS) 

 To determine the effect of 5-HPQ, 5,6-OQPQ and MHQ on oxidative stress, the reactive 

oxygen species (ROS) generation in both normal and G6PDd human erythrocytes was measured 

using the fluorescent dye, DCFDA. Like methemoglobin toxicity, all the three metabolites namely, 

5-HPQ, 5,6-OQPQ and MHQ generated significant, concentration-dependent ROS in normal and 

G6PDd human erythrocytes, which is indicated by an increase in fluorescence. Generation of 

oxidative stress (increase in ROS) due to 5-HPQ exposure was statistically significantl at all the 

concentrations (3.125 to 25 µM) tested (p< 0.0001), in normal human erythrocytes. In G6PDd 

human erythrocytes, 5-HPQ exposure caused significant increase in oxidative stress at 6.25, 12.5 

and 25 µM as compared to vehicle control (p< 0.01, p< 0.0001 and p< 0.0001, respectively) 

(Figure 2.4). ROS formation caused by 5-HPQ was significantly higher at 3.125, 6.25 and 12.5 

µM concentration (p< 0.05, p< 0.01 and p< 0.001, respectively) in normal versus G6PDd 

erythrocytes (Figure 2.4).  

Similar to 5-HPQ, 5,6-OQPQ also generated robust ROS in normal human erythrocytes 

3.125, 6.25, 12.5 and 25 µM as compared to vehicle control (0 µM) in normal (p< 0.05, p< 0.01, 

p< 0.0001 and p< 0.0001, respectively). However, in G6PDd human erythrocytes, exposure of 5,6-

OQPQ produced significant ROS at 12.5 and 25 µM concentration (p< 0.001 and p< 0.0001, 

respectively) (Figure 2.5). 5,6-OQPQ produced considerably higher ROS in normal erythrocytes 

(p< 0.01) as compared to G6PDd human erythrocytes only at 25 µM (Figure 2.5). Generation of 

oxidative stress (increase in ROS) due to MHQ exposure was statistically significant at all the 

concentrations (3.125 to 25 µM) tested (p< 0.0001), both in normal and G6PDd human 

erythrocytes (Figure 2.6). However, ROS formation caused by MHQ was not significantly 

different in normal versus G6PDd erythrocytes (Figure 2.6). 
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Thus, these data suggest that 5-HPQ, 5,6-OQPQ, and MHQ generated considerable 

oxidative stress in normal and G6PDd human erythrocytes. MHQ did not produce significantly 

different oxidative stress in normal as compare to G6PDd human erythrocytes. However, 5-HPQ 

and 5,6-OQPQ produced statistically higher amount of oxidative stress in normal as compare to 

G6PDd human erythrocytes (Figure 2.4, 2.5 and 2.6).  
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Figure 2.4: Generation of reactive oxygen species, shown by increase in fluorescence in 
DCFDA loaded normal and G6PDd human erythrocytes by 5-HPQ exposure. (A) RFU at 120 
minutes in normal and G6PDd human erythrocytes exposed to 5-HPQ. Each data point 
represents mean ± SE of at least duplicate observations. The results were analyzed with 
GraphPad Prism® with two-way ANOVA followed by Tukey’s multiple comparison test and P 
values <0.05 were considered as statistically significant. Time-dependent increase in 
fluorescence due to reactive oxygen species generation in (B) normal, and (C) G6PDd human 
erythrocytes exposed to different concentration of 5-HPQ. Each data point is mean of at least 
duplicate observations. RFU- Relative fluorescence unit. 
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Figure 2.5: Generation of reactive oxygen species, shown by increase in fluorescence in DCFDA 
loaded normal and G6PDd human erythrocytes by 5,6-OQPQ exposure. (A) RFU at 120 minutes 
in normal and G6PDd human erythrocytes exposed to 5-HPQ. Each data point represents mean ± 
SE of at least duplicate observations. The results were analyzed with GraphPad Prism® with two-
way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered 
as statistically significant. Time-dependent increase in fluorescence due to reactive oxygen species 
generation in (B) normal, and (C) G6PDd human erythrocytes exposed to different concentration 
of 5,6-OQPQ. Each data point is mean of at least duplicate observations. RFU- Relative 
fluorescence unit. 
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Figure 2.6: Generation of reactive oxygen species, shown by increase in fluorescence in DCFDA 
loaded normal and G6PDd human erythrocytes by MHQ exposure. (A) RFU at 120 minutes in 
normal and G6PDd human erythrocytes exposed to 5-HPQ. Each data point represents mean ± SE 
of at least duplicate observations. The results were analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. Time-dependent increase in fluorescence due to reactive oxygen species 
generation in (B) normal, and (C) G6PDd human erythrocytes exposed to different concentration 
of MHQ. Each data point is mean of at least duplicate observations. RFU- Relative fluorescence 
unit. 
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2.5.3. Estimation of intraerythrocytic reduced glutathione (GSH) levels.  

 To estimate the effect of 5-HPQ, 5,6-OQPQ and MHQ on the intraerythrocytic GSH level 

in normal and G6PDd human erythrocytes enzymatic luciferase assay was used. The basal GSH 

level (vehicle control, 0 µM) in G6PDd human erythrocytes was significantly lower as compared 

to normal human erythrocytes (p<0.001) (Figure. 2.7.A and 2.7.C) suggesting that the depletion 

in GSH level in G6PDd erythrocytes is because of the genetic defect. Treatment of 5-HPQ 

increased GSH at 3.125 µM (5.6 %) and decreased GSH at 12.5 µM and 25 µM (5.7% and 10.7% 

respectively) relative to vehicle control in normal human erythrocytes (Figure. 2.7.B). However, 

the increase and decrease in GSH level due to treatment in normal erythrocytes was not significant. 

Treatment of 5-HPQ caused concentration-dependent depletion in GSH level at 3.125 µM, 6.25 

µM (40.9%), 12.5 µM (46.8%) and 25 µM (74.7%) in G6PDd human erythrocytes as compared to 

vehicle control and the depletion in GSH levels were not significant (Figure. 2.7.A and 2.7.B).  

Exposure of 5,6-OQPQ, increased GSH at 3.125 µM (5.5%), 6.25 µM (8.4%), 12.5 µM 

(6.04 %) relative to untreated normal human erythrocytes (Figure. 2.7.D). The increased in GSH 

level due to treatment in normal erythrocytes was not significant. Exposure of 5,6-OQPQ caused 

concentration-dependent depletion in GSH level at 3.125 µM (41.7%), 6.25 µM (61%; p< 0.05), 

12.5 µM (77.8%; p< 0.01) and 25 µM (85.1%; p< 0.01) in G6PDd human erythrocytes as compare 

to vehicle control (Figure. 2.7.C and 2.7.D).  

MHQ caused, increase in GSH levels at 3.125 µM (62.1%), 6.25 µM (40.6%), 12.5 µM 

(24.4%) and 25 µM (0.33%) relative to vehicle control in normal human erythrocytes (Figure. 

2.7.F). In G6PDd erythrocytes, MHQ increased GSH levels at 3.125 µM (18.7%), 12.5 µM (16%) 

and 25 µM (21.6%) and depleted GSH levels at 3.125 µM (14,3%) relative to vehicle control in 

G6PDd human erythrocytes (Figure. 2.7.F). The effect of MHQ in GSH levels in normal and 
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G6PDd human erythrocytes was not significant (Figure. 2.7.E). Thus, these results indicate that 

5,6-OQPQ caused concentration-dependent depletion in GSH level selectively in G6PDd human 

erythrocytes. 
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Figure 2.7: Intraerythrocytic GSH levels of normal and G6PDd human erythrocytes treated with 
(A) 5-HPQ, (C) 5,6-OQPQ and (E) MHQ. Each data point represents mean ± SE of at least 
duplicate observations. The results were analyzed with GraphPad Prism® with two-way ANOVA 
followed by Tukey’s multiple comparison test and P values <0.05 were considered as statistically 
significant. *p < 0.05, ***p < 0.001 and ****p < 0.0001 compared with normal erythrocyte with 
corresponding concentration. Percent change in intraerythrocytic GSH levels of normal and 
G6PDd human erythrocytes due to treatment with (B) 5-HPQ, (D) 5,6-OQPQ and (F) MHQ. The 
percent change in intraerythrocytic GSH levels in treated normal and treated G6PDd erythrocytes 
are expressed relative to those in vehicle control in normal and G6PDd erythrocytes respectively.  
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2.5.4. Estimation of intraerythrocytic total glutathione levels. 

Total intraerythrocytic glutathione level was also measured by enzymatic luciferase assay 

using TCEP as reducing agent to thiol (Winther and Thorpe 2014). The results suggest that the 

basal total intraerythrocytic glutathione levels (vehicle control) were lower in G6PDd human 

erythrocytes as compared to normal human erythrocytes. However, the difference was not 

statistically significant (54.7% in Figure 2.8.A, 37.3% in Figure 2.8.C and 34.9% in Figure 2.8.E). 

Exposure of 5-HPQ increased total glutathione levels at 3.125 µM (4.6%) and decreased total 

glutathione levels at 6.25 µM (2.8%),12.5 µM (6.9%) and 25 µM (15%) relative to vehicle control 

in normal human erythrocytes (Figure. 2.8.B). Treatment of 5-HPQ caused an increase in total 

glutathione levels at 3.125 (67%), 6.25 (5.1%), 12.5 (42.7%) and 25 µM (10.8%) in G6PDd human 

erythrocytes as compare to vehicle control (Figure 2.8.B).  However, the effect of 5-HPQ on total 

glutathione levels was not significant at any concentration (3.125-25 µM) as compared to vehicle 

control in normal and G6PDd erythrocytes (Figure 2.8.A and 2.8.B).  

Treatment of 5,6-OQPQ, increased total glutathione levels at 3.125 µM (8.1%), 6.25 µM 

(6.3%) and 25 µM (2.7%) and decreased total glutathione levels at 12.5 µM (1.9%) relative to 

vehicle control in normal human erythrocytes (Figure. 2.8.D). 5,6-OQPQ caused decrease in total 

glutathione levels at 3.125 (13.9%), 6.25 (18.9%), 12.5 (7.4%) and 25 µM (7.4%) in G6PDd 

human erythrocytes as compare to vehicle control (figure. 2.8.D).  However, 5,6-OQPQ did not 

have any significant effect on total glutathione levels at any concentration (3.125-25 µM) as 

compared to vehicle control in normal and G6PDd erythrocytes (Figure. 2.8.C and 2.8.D).  

MHQ caused an increase in total glutathione levels at 3.125 (69.8%), 6.25 (58.3%), 12.5 

µM (54.9%) and decreased at 25 µM (3.55%) relative to vehicle control in normal human 
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erythrocytes (Figure 2.8.F). In G6PDd erythrocytes, MHQ increased total glutathione levels at 

3.125 (45,2%), 6.25 (3.9%), 12.5 (37.5) and 25 µM (62.5%) relative to vehicle control in G6PDd 

human erythrocytes (Figure 2.8.F). Though, the effect of MHQ on total glutathione levels in 

normal and G6PDd human erythrocytes was not significant as compared to vehicle control (Figure 

2.8.E). These results indicate that 5-HPQ, 5,6-OQPQ, and MHQ did not cause significant effect 

on total glutathione level in normal and G6PDd human erythrocytes. 
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Figure 2.8: Intraerythrocytic total glutathione levels of normal and G6PDd human erythrocytes 
treated with (A) 5-HPQ, (C) 5,6-OQPQ and (E) MHQ. Each data point represents mean ± SE of 
at least duplicate observations. The results were analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. *p < 0.05 compared with normal erythrocyte with corresponding 
concentration. Percent change in intraerythrocytic total glutathione levels of normal and G6PDd 
human erythrocytes due to treatment with (B) 5-HPQ, (D) 5,6-OQPQ and (F) MHQ. The percent 
change in intraerythrocytic GSH levels in treated normal and treated G6PDd erythrocytes are 
expressed relative to those in vehicle control in normal and G6PDd erythrocytes respectively. 
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2.5.5. Determination of phosphatidylserine exposure in human erythrocytes. 

 The flow cytometric assay employing FITC Annexin V binding assay was used to 

determine phosphatidylserine externalization in normal and G6PDd erythrocytes. Betulinic acid 

was tested as a positive control in this assay. Translocation of phosphatidylserine on the outer 

membrane of erythrocytes due to treatment with 5,6-OQPQ (25 µM) and a comparative evaluation 

of translocation of phosphatidylserine in normal and G6PDd erythrocytes due to 5,6-OQPQ 

exposure was done. Treatment with betulinic acid caused a significant increase in 

phosphatidylserine exposure both in normal (p<0.01) and G6PDd erythrocytes (p<0.001). 

Treatment with betulinic acid caused statistically more externalization of phosphatidylserine in 

G6PDd erythrocytes versus normal erythrocytes (p<0.05). Treatment with 5,6-OQPQ induced 

phosphatidylserine externalization in both normal and G6PDd erythrocytes, however, the increase 

in phosphatidylserine externalization was statistically significant (p<0.01) only in G6PDd 

erythrocytes. Treatment with 5,6-OQPQ induced significantly higher phosphatidylserine 

externalization in G6PDd as compared to normal erythrocytes (p<0.01) (Figure 2.9). Thus, these 

results suggest that 5,6-OQPQ caused externalization of phosphatidylserine on the outer surface 

of G6PDd human erythrocytes. 
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Figure 2.9:  Phosphatidyl serine exposure (as analyzed by Annexin V binding) induced by 5,6-
OQPQ in normal and G6PDd human erythrocytes. Each data point represents mean ± SE of at 
least duplicate observations. The results were analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. **p < 0.01, ***p < 0.01 compared with corresponding erythrocyte and 
vehicle control. ap < 0.05, bp < 0.01 compared with normal human erythrocytes exposed with 
corresponding treatment. 
  

2.5.6. Comparative hemolytic response of 5-HPQ, 5,6-OQPQ, and MHQ  

The methemoglobin formation induced by 5-HPQ, 5,6-OQPQ and MHQ was compared at 

the highest concentration (25 µM) used in the assay. The results suggest that methemoglobin 

formation caused by 5,6-OQPQ was significantly higher as compared to that of caused due to 5-

HPQ and MHQ in normal (p< 0.001 and p< 0.0001 respectively). However, in G6PDd 

erythrocytes, 5,6-OQPQ induced methemoglobin formation was significantly higher as compared 

to MHQ (p< 0.0001) and 5-HPQ (p> 0.05). Similarly, 5-HPQ formed significantly higher 

methemoglobin as compared to MHQ in normal and G6PDd erythrocytes (p< 0.01 and p< 0.0001 

respectively). Thus, these results suggest PQ metabolites formed methemoglobin in the following 

order: 5,6-OQPQ > 5-HPQ > MHQ in normal and G6PDd erythrocytes (Figure 2.3). 
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Similarly, oxidative stress generated by 5-HPQ, 5,6-OQPQ and MHQ was compared at the 

highest concentration (25 µM) used in the assay. The comparison suggests that ROS generation 

induced by MHQ was significantly higher as compared to that of induced by 5-HPQ (p< 0.0001) 

and 5,6-OQPQ (p< 0.0001) in normal and G6PDd erythrocytes. However, 5-HPQ did not generate 

significantly different ROS as compared to 5,6-OQPQ in normal and G6PDd erythrocytes (Figure 

2.4, 2.5 and 2.6). Thus, these results suggest PQ metabolites generates oxidative stress in following 

order: MHQ > 5-HPQ = 5,6-OQPQ in normal and G6PDd erythrocytes. 

The depletion in GSH levels caused by 5-HPQ, 5,6-OQPQ, and MHQ was also compared 

at the highest concentration (25 µM) used in the assay in G6PDd erythrocytes only since 

metabolites did not have any significant depletion in normal erythrocytes. Treatment of 5-HPQ 

and 5,6-OQPQ caused depletion (74.7% and 85.1%; p< 0.01 respectively) in GSH levels in G6PDd 

human erythrocytes as compare to vehicle control. However, MHQ caused 18.7% increase in 

G6PDd erythrocytes. However, the GSH depletion caused by 5,6-OQPQ was significant.  

 

2.6. DISCUSSION 

PQ treatment to G6PD individuals causes severe hemolysis accompanied with dark urine 

and mild jaundice (Ashley et al. 2014; Clayman et al. 1952; Hockwald et al. 1952). The clinical 

manifestations of hemolytic toxicity depend mainly on the dose of PQ and severity of the patient’s 

G6PD genetic defect (Ashley et al. 2014; Cappellini and Fiorelli 2008). Various groups studied 

both in vitro and in vivo hemotoxic effects of PQ (Hong et al. 1992; Vasquez-Vivar and Augusto 

1992, 1994; Morais Mda and Augusto 1993; Bolchoz et al. 2001; Bolchoz et al. 2002b; Bolchoz 

et al. 2002a; Bowman et al. 2004; Bowman et al. 2005b; Bowman et al. 2005a; Ganesan et al. 

2009; Ganesan et al. 2012; Garg et al. 2011). The efficacy and hemolytic toxicity of PQ depend 
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on hepatic metabolism (Ganesan et al. 2009; Ganesan et al. 2012; Xuan et al. 2016). Although 

numerous studies have been done in last two decades, to understand the underlying mechanism of 

PQ-induced hemolysis still, the metabolite (s) and pathway (s), which are responsible for the 

hemolytic toxicity is not clear and inadequate.  

Ganesan et al. analyzed the hemotoxic effect of PQ in the presence of human liver 

microsomes (HLM), mouse liver microsomes (MLM) and recombinant human-CYPs isoforms in 

normal and Glucose-6-Phosphate Dehydrogenase-deficient (G6PDd) human erythrocytes 

(Ganesan et al. 2009; Ganesan et al. 2012). The studies showed that in the presence of HLM, PQ-

induced methemoglobin (MtHb) formation, reactive oxygen species (ROS) generation, and 

depletion in thiols in human erythrocytes (Ganesan et al. 2009; Ganesan et al. 2012). Multiple 

CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6, and CYP3A4) were found to mediate the 

metabolism of PQ and cause PQ-associated hemotoxicity in human erythrocytes (Ganesan et al. 

2009). Recent studies revealed that the production of 5-HPQ and other phenolic metabolites of PQ 

depend on of CYP2D6-mediated metabolism (Fasinu et al. 2014; Pybus et al. 2012; Pybus et al. 

2013; Potter et al. 2015). 

The current studies mentioned in this chapter suggest that 5-HPQ and MHQ are hemotoxic 

metabolites of PQ. 5-HPQ and MHQ produced a robust generation of methemoglobin and 

oxidative stress in normal and G6PDd human erythrocytes. 5-HPQ caused depletion of GSH 

selectively in G6PDd human erythrocytes. However, MHQ did not cause depletion in GSH levels 

in either human erythrocytes. The results found in our studies regarding 5-HPQ and MHQ 

hemotoxicity are consistent with previous studies done on 5-HPQ and MHQ on rat erythrocytes 

(Bolchoz et al. 2001; Bolchoz et al. 2002b; Bolchoz et al. 2002a; Bowman et al. 2004; Bowman 

et al. 2005b; Bowman et al. 2005a). These studies suggested that 5-HPQ caused methemoglobin 
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formation, depletion of GSH (Bowman et al. 2004) and generation of ROS in rat erythrocytes 

(Bowman et al. 2005b), and MHQ resulted in oxidation of GSH (Bolchoz, Morrow et al. 2002), 

and generated oxidative stress (Bolchoz, Gelasco et al. 2002) in rat erythrocytes (Bolchoz, 

Budinsky et al. 2001, Bolchoz, Gelasco et al. 2002, Bolchoz, Morrow et al. 2002). Although, our 

result did not show the effect of MHQ on GSH depletion/oxidation since the concentration of 

MHQ used by Bolchoz et al. was 350 µM. Our studies also explored the hemotoxic mechanism of 

5,6-OQPQ, the spontaneously transformed product of 5-HPQ, which has been identified only 

recently (Fasinu et al. 2014). The results showed that 5,6-OQPQ caused concentration-dependent 

generation of methemoglobin and oxidative stress in normal and G6PDd human erythrocytes and 

also induced concentration-dependent depletion of GSH selectively in G6PDd human 

erythrocytes. The comparative hemolytic response of 5-HPQ, 5,6-OQPQ, and MHQ suggest that 

5,6-OQPQ formed the highest amount of methemoglobin, followed by 5-HPQ and MHQ in normal 

and G6PDd erythrocytes. MHQ generated highest oxidative stress as compared to 5-HPQ and 5,6-

OQPQ in normal and G6PDd erythrocytes. 5-HPQ and 5,6-OQPQ generated the almost similar 

amount of oxidative stress in normal and G6PDd erythrocytes. Furthermore, 5,6-OQPQ caused 

higher GSH depletion followed by 5-HPQ and MHQ in G6PDd erythrocytes. 

5,6-OQPQ caused externalization of phosphatidylserine on the outer surface of G6PDd 

human erythrocytes suggesting the involvement of eryptosis in PQ-induced hemotoxicity. 

However, previous studies showed that eryptosis might not be involved in removing damaged 

erythrocytes, which occur due to PQ hemotoxicity (Ganesan et al. 2012). However, in this study 

(Ganesan et al. 2012), the erythrocytes were incubated with PQ alone in the presence of human 

liver microsomes only for 3 hours. The short exposure time of 3 hours may not be sufficient to 
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trigger cellular changes in erythrocytes. Unlike current studies, where erythrocytes were incubated 

with   5,6-OQPQ for 24 hours. 

In conclusion, the current in vitro studies described here infers that 5-HPQ, 5,6-OQPQ, and 

MHQ are hemotoxic metabolites of PQ and cause a concentration-dependent hemotoxic response 

by forming methemoglobin, generating oxidative stress in normal and G6PDd human erythrocytes. 

5,6-OQPQ depleted GSH and caused externalization of phosphatidylserine selectively in G6PDd 

human erythrocytes. Exposure of PS on the outer membrane is the ultimate commitment of 

erythrocyte to be phagocytized by macrophages. Thus, these results suggest that eryptotic pathway 

triggers the removal of damaged erythrocytes from the circulation in the G6PDd population on 

exposure to PQ. 
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CHAPTER 3 

THE ROLE OF NRH-QUINONE OXIDOREDUCTASE 2 IN HEMOLYTIC TOXICITY 

OF PRIMAQUINE METABOLITES. 

 

3.1. INTRODUCTION & RATIONALE  

NRH-quinone oxidoreductase 2 (NQO2) is a cytosolic and ubiquitously expressed FAD-

linked oxidoreductive enzyme, catalyzes mandatory two-electron reductions of quinone to 

hydroquinones without accumulating semiquinones and free radicals (Foster et al. 2000; Vella et 

al. 2005). Thus, NQO2 seems to be the detoxification enzyme for quinones (Graves et al. 2002). 

However, earlier reports suggest that NQO2 is also capable of causing metabolic activation of 

quinones (Ferry et al. 2010). In addition, to reduction of quinone, NQO2 stabilizes the p53 tumor 

suppressor (Khutornenko et al. 2010). NOQ2 gene is expressed in heart, liver, kidney, brain and 

erythrocytes. Furthermore, only NQO2 is present in human erythrocytes and NADPH-quinone 

oxidoreductase 1 (NQO1) is absent (Graves et al. 2002). 

Human erythrocytic NQO2 is the only potential protein target identified for PQ (Ki-

1.04±0.38 µM) (Graves et al. 2002). Previous kinetics studies demonstrated that PQ preferentially 

binds to the oxidized state of NQO2. PQ shows competitive inhibition against the electron donating 

co-factor dihydronicotinamide riboside (NRH), and reduces FAD to FADH2 (Leung and Shilton 

2013). Ping-pong mechanisms can explain the inhibition of NQO2 by PQ and reduction 

mechanism of NQO2. According to this mechanism, NQO2 protein has a unique catalytic site for 
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the substrate and co-substrate. First, the co-substrate (an electron donor) occupies the site, releases 

and converts the FAD to FADH2. After that, the substrate (an electron acceptor) enters the catalytic 

site and is reduced (Leung and Shilton 2013; Vella et al. 2005; Kwiek et al. 2004).  

NQO2 belongs to thioredoxin family of enzymes and is distinctive as it uses 

dihydronicotinamide riboside (NRH) as a reducing coenzyme instead of NADH or NADPH. 

Nicotinamide riboside, the oxidized form of the NRH, participates in NAD metabolism, although 

the cellular source of the NRH, is still not known, and it is unclear why NQO2 uses NRH (Leung 

and Shilton 2013; Long and Jaiswal 2000).  Melatonin (Mel) (IC50 = 41.5±1.5µM), resveratrol 

(Res) (IC50 = 0.143±0.05 µM) and quercetin (Quer) (IC50 = 1.4±0.1 µM) are potent inhibitors of 

NQO2 (Figure 3.1) (Ferry et al. 2010; Boutin et al. 2005). As mentioned earlier, that NQO2 is the 

only target identified for PQ and redox cycling of quinone and quinone-imine metabolites has been 

implicated in hemotoxicity of PQ (Marcsisin et al. 2016). It is also known that in erythrocytes only 

NOQ2 is present and NQO1 is absent, and NQO2 participates in quinone activation/detoxification 

(Graves et al. 2002; Foster et al. 2000; Vella et al. 2005; Ferry et al. 2010).   It seems NQO2 might 

have a role in PQ-induced hemolytic toxicity. Thus, in the current study, Mel, Res and Quer, the 

inhibitors of NQO2 were used as probes to investigate the function of NQO2 in PQ metabolites-

induced hemolytic toxicity. 

Docking studies are a powerful tool to gain an understanding of interactions between the 

protein and ligands (Grinter and Zou 2014; Huang and Zou 2010). With docking studies, the 

binding mode and binding affinity between protein and ligand are determined and is important to 

understand the overall mechanism and function of the protein-ligand complex (Huang and Zou 

2010). Thus, the molecular docking between human NQO2 protein crystal structure (PDB id 4FGJ) 

and metabolites of PQ was performed using Schrödinger software suite.  
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Figure 3.1: Structures of NQO2 inhibitors. 
 

3.2. HYPOTHESIS 

 The oxidative phenolic and quinone metabolites of PQ interact with NQO2, which 

modulates redox cycling of PQ metabolites and their potential to cause hemolytic toxicity.    

 

3.3. OBJECTIVE 

 The purpose of this study was to investigate the function of NQO2, a cytosolic flavoprotein 

enzyme involved in metabolic detoxification/activation of quinones, in PQ-induced hemolytic 

anemia. In this study, the hemolytic toxicity of PQ metabolites was evaluated in the presence of 

NQO2 inhibitors, namely melatonin (Mel), resveratrol (Res) and quercetin (Quer) on normal and 

G6PDd human erythrocytes. Further, the interactions between human NQO2 protein crystal 

structure (PBD: 4FGJ) and metabolites of PQ were analyzed using computational docking 

approach. 

 

3.4. MATERIALS AND METHODS. 

3.4.1. Chemicals  
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 Melatonin, resveratrol, and quercetin were purchased from Sigma–Aldrich (St. Louis, MO, 

USA). The information of remaining chemicals and kits were given in Chapter 2.  

 

3.4.2. Procurement of human blood 

 Blood was drawn from normal and glucose 6-phosphate dehydrogenase deficient (G6PDd) 

healthy volunteers under an IRB approved protocol and stored at 40C. To analyze the effect of 

NQO2 inhibitors in early biomarkers of hemolytic response (MtHb formation, ROS generation, 

GSH and total glutathione estimation) of 5-HPQ and 5,6-OQPQ, the G6PDd blood taken from an 

African American male carrying the classic A/A- a combination of electrophoretic variant 

(Asn126Asp) and deficiency allele (Val68Met) was used. To determine the effect of NQO2 

inhibitors in the hemolytic response of MHQ, G6PDd blood was obtained a Caucasian male 

containing the Ser188Phe Mediterranean mutation was used. To evaluate the effect of quercetin 

on phosphatidylserine exposure, the late eryptosis response, induced by 5,6-OQPQ, G6PDd blood 

taken from an African American male carrying the classic A/A- a combination of electrophoretic 

variant (Asn126Asp) and deficiency allele (Val68Met) was used. 

 

3.4.3. Preparation of erythrocytes for hemotoxicity assays 

Similar to chapter 2 section 2.4.3 

 

3.4.4. In vitro hemotoxic assays 

The in vitro hemotoxic assays were similar to mentioned in chapter 2 section 2.4.4. The 

concentration of NOQ2 inhibitors (melatonin, resveratrol, and quercetin) used was 100 µM.  

 



www.manaraa.com

67 
 

3.4.4.1. Methemoglobin formation assay  

The reaction mixture contained 50 µl erythrocytes suspended in PBSG with 50% 

hematocrit, 2.5 µl of test NQO2 inhibitor (Mel, Res, and Quer), 2.5 µl of test metabolite (5-HPQ, 

5,6-OQPQ or MHQ) and PBSG to make a final volume of reaction mixture to 250 µl. Remaining 

method is similar to “methemoglobin formation assay” mentioned in chapter 2 section 2.4.4.1. 

 

3.4.4.2. Reactive oxygen species (ROS) formation (oxidative stress kinetics assay) 

The reaction mixtures contained 100 µL DCFDA loaded erythrocytes (50% hematocrit), 2 

µl test NQO2 inhibitor, 2 µl test metabolite and PBSG to make a final volume of reaction mixture 

to 200 µl. The test NOQ2 inhibitor was first incubated with erythrocytes for 10 minutes at 370C 

and then the test metabolite was added. Remaining method is similar to “ROS formation assay” 

mentioned in chapter 2 section 2.4.4.2. 

 

3.4.4.3. Estimation of intraerythrocytic reduced glutathione (GSH) and total glutathione 

levels 

The method is similar to “estimation of intraerythrocytic reduced glutathione (GSH) and 

total glutathione levels” mentioned in chapter 2 section 2.4.4.3. 

 

3.4.4.4. Evaluation of phosphatidylserine exposure (Annexin V binding assay) 

To prepare the samples, 50 µl the washed normal and G6PDd erythrocytes (suspended in 

PBSG with 50% hematocrit) were treated with 2.5 µl test NQO2 inhibitor and 2.5 µl test 

metabolite. PBSG was added to make a final volume of reaction mixture to 250 µl. The test NOQ2 

inhibitor was first incubated with erythrocytes for 10 minutes at 370C and then the test metabolite 
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was added. Samples were incubated for 24 hours at 37 0C in a shaking water bath. The method 

was similar to “evaluation of phosphatidylserine exposure (Annexin V binding assay)” mentioned 

in chapter 2 section 2.4.4.4. 

 

3.4.5. Computational methods 

The crystal structure of human NQO2 enzyme was downloaded from the protein data bank 

[PDB ID: 4FGJ] (Leung and Shilton 2013). Protein structure was preprocessed for adding missing 

hydrogens, adjusting bond orders, proper ionization, and refined using protein preparation wizard 

in Schrödinger software suite v2016-1 (Schrödinger 2016a). We kept water molecules in the 

crystal structure near 5Å of ligand binding site. There was no missing side chain; however, 

alternate positions were found for few residues [MET116 (chain A), GLU153 (chain A), SER164 

(chain A), MET116 (chain B), SER134 (chain B)] including PQ. We used the highest average 

occupancy position of these residues as well as for PQ. The PROPKA program was used to predict 

the protonation states for protein residues at pH 7.0. Finally, a restrained minimization considering 

hydrogens only was performed using OPLS3 (Optimized Potentials for Liquid Simulations) force 

field. All the ligands, PQ, PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ), menadione and 

melatonin (Mel) were sketched using Maestro, and ionizable compounds were converted to their 

most probable charged forms at physiological pH 7.4 and energy minimized using LigPrep module 

implemented in the Schrödinger software (Sastry et al. 2013; Schrödinger 2016b). Furthermore, 

the grid was prepared considering co-crystal ligand (primaquine) as the centroid of the active site 

in the NQO2 protein. A scaling factor of 1.0 was applied to the van der Waals radii and docking 

study was performed using Glide software considering extra precision (XP) docking method 

(Friesner et al. 2006). The protein was kept rigid while ligands were flexible during docking. 5 
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poses for each ligand were kept. Default settings were used for all remaining parameters if not 

reported elsewhere. The best poses were ranked based on Emodel scores [a mathematical 

combination of the Glide-score, the ligand strain (Einternal), and the Coulomb and van der Waals 

energies]. Further binding free energy (Prime MM-GBSA) of the best protein-ligand complexes 

was calculated using Prime module of the Schrödinger software. The docking score and interaction 

profile between protein and ligands were further analyzed (Friesner et al. 2006; Sastry et al. 2013).  

Menadione is a known substrate of NQO2 (Ferry et al. 2010). PQ, Mel and menadione 

were used as a reference compound in this study so that the glide gscore and interaction profile of 

these reference compound can be compared with PQ metabolites. The knowledge generated 

through this analysis would help to understand that how the PQ metabolites bind/interact with the 

protein, whether PQ metabolites bind like an inhibitor or like a substrate. 

 

3.4.6. Statistical analysis. 

Similar to chapter 2 section 2.4.5. 

 

3.5. RESULTS 

3.5.1. Methemoglobin formation 

 The washed normal and G6PDd human erythrocytes were incubated with the test 

compounds at 370C for an hour and then analyzed with co-oximeter to determine methemoglobin. 

Exposure of erythrocytes to oxidative reactions converts the Fe+2 oxyhemoglobin to Fe+3 

methemoglobin, which loses the oxygen carrying capacity. The elevation in blood methemoglobin 

levels, referred as methemoglobinemia, is an important diagnostic marker for oxidative stress. Co-
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treatment of human erythrocytes with NQO2 inhibitors (Mel, Res, and Quer) caused a robust 

elevation in metabolites (5-HPQ, 5,6-OQPQ, and MHQ) induced- methemoglobin formation.  

Mel caused significant increase in 5-HPQ-induced methemoglobin formation in both 

normal and G6PDd erythrocytes at 6.25, 12.5 and 25 µM concentration of 5-HPQ (Figure 3.2.A 

and 3.2.B). Res and Quer considerably increased in 5-HPQ-induced methemoglobin formation in 

both normal and G6PDd erythrocytes at all concentration (3.125-25 µM) of 5-HPQ (3.2.C and 

3.2.D, 3.2.E and 3.2.F). These results indicate that all three NQO2 inhibitors (Mel, Res, and Quer) 

increased 5-HPQ-induced methemoglobin. 

Mel, Res, and Quer caused a significant increase in 5,6-OQPQ-induced methemoglobin 

formation in both normal and G6PDd erythrocytes at all concentrations (3.125-25 µM) of 5,6-

OQPQ (Figure. 3.3). These results suggest that NQO2 inhibitors (Mel, Res, and Quer) augment 

methemoglobinemia induced by 5,6-OQPQ. 

Mel, Res, and Quer significantly increased MHQ-induced methemoglobin formation in 

both normal and G6PDd erythrocytes at all concentrations (3.125-25 µM) of 5,6-OQPQ (Figure. 

3.4). These results show that NQO2 inhibitors (Mel, Res, and Quer) augment methemoglobinemia 

induced by MHQ.  

Thus, the results indicate that NQO2 inhibitors (Mel, Res, and Quer) intensified 

methemoglobinemia induced by PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ) in normal and 

G6PDd erythrocytes. Moreover, Quer alone caused a significant increase in methemoglobin 

accumulation (Figure 3.2.E, 3.2.F, 3.3.E, 3.3.F, 3.4.E and 3.4.F) and suggested that Quer forms 

methemoglobin in normal and G6PDd erythrocytes. 

 

 



www.manaraa.com

71 
 

 

Figure 3.2: Methemoglobin formation due to treatment with 5-HPQ (A, B, C, D, E and F), 5-HPQ 
+ Mel (A and B), 5-HPQ + Res (C and D) and 5-HPQ + Quer in (E and F) normal and (B, D and 
F) G6PDd human erythrocytes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared with 5-
HPQ-treated erythrocytes at corresponding concentration. 
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Figure 3.3: Methemoglobin formation due to treatment with 5,6-OQPQ (A, B, C, D, E and F), 
5,6-OQPQ + Mel (A and B), 5,6-OQPQ + Res (C and D) and 5,6-OQPQ + Quer in (E and F) 
normal and (B, D and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at 
least duplicate observations. The results were statistically analyzed with GraphPad Prism® with 
two-way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were 
considered as statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
compared with 5,6-OQPQ -treated erythrocytes at corresponding concentration. 
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Figure 3.4: Methemoglobin formation due to treatment with MHQ (A, B, C, D, E and F), MHQ 
+ Mel (A and B), MHQ + Res (C and D) and MHQ + Quer in (E and F) normal and (B, D and F) 
G6PDd human erythrocytes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared with 
MHQ-treated erythrocytes at corresponding concentration. 
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3.5.2. Generation of reactive oxygen species (ROS) 

 To determine the effect of NQO2 inhibitors (Mel, Res, and Quer) on oxidative stress caused 

by PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ), the reactive oxygen species (ROS) generation 

in both normal and G6PDd human erythrocytes was measured using the fluorescent dye, DCFDA. 

Co-treatment of Mel increased generation of oxidative stress (increase in ROS) caused by 5-HPQ 

in normal and G6PDd human erythrocytes at all the concentrations, (3.125-25 µM) of 5-HPQ 

(Figure 3.5.A and 3.5.B). Res partially subsided ROS generated by 5-HPQ in normal erythrocytes 

and G6PDd human erythrocytes at all the concentrations (3.125-25 µM) of 5-HPQ (Figure 3.5.C 

and 3.5.D ). Quer had a dual effect on 5-HPQ-induced ROS generation in both erythrocytes. Quer 

increased ROS induced by a lower concentration of 5-HPQ in normal (3.125 µM) and G6PDd 

(3.125 and 6.25 µM) erythrocytes (Figure 3.5.E and 3.5.F). However, Quer partially attenuated 

ROS caused by the higher concentration of 5-HPQ in normal (12.5 and 25 µM) and G6PDd (25 

µM) erythrocytes (Figure 3.5.E and 3.5.F). Additionally, treatment of Quer alone produced a 

significant increase in ROS in normal and G6PDd erythrocytes as compared to vehicle control 

(Figure 3.5.E and 3.5.F). 

 Co-exposure of Mel with 5,6-OQPQ potentiated oxidative stress generated due 5,6-OQPQ 

alone in normal and G6PDd human erythrocytes at all the concentrations (3.125-25 µM) of 5,6-

OQPQ (Figure 3.6.A and 3.6.B). Res partially attenuated oxidative stress produced by 5,6-OQPQ 

in G6PDd erythrocytes at 25 µM concentrations of 5,6-OQPQ (Figure 3.6.D). Similarly, Res 

partially attenuated oxidative stress produced by 5,6-OQPQ in normal erythrocytes. However, the 

effect of Res is not statistically significant (Figure 3.6.C). Quer increased ROS induced by 5,6-

OQPQ in normal and G6PDd at 3.125 - 12.5 µM concentrations of 5,6-OQPQ (Figure 3.6.E and 
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3.6.F). Furthermore, exposure of Quer alone generated a significant increase in ROS in normal 

and G6PDd erythrocytes as compared to vehicle control (Figure 3.6.E and 3.6.F). 

 
 Co-exposure of Mel with MHQ potentiated oxidative stress generated due to MHQ alone 

in normal and G6PDd human erythrocytes at all the concentrations (3.125 - 25 µM) of MHQ 

(Figure 3.7.A and 3.7.B). Res and Quer partially attenuated oxidative stress produced by MHQ 

alone in normal and G6PDd human erythrocytes at all the concentrations (3.125 - 25 µM) of MHQ 

(Figure. 3.7).  

Thus, the results indicate that Mel potentiates oxidative stress induced by PQ metabolites 

(5-HPQ, 5,6-OQPQ, and MHQ) in normal and G6PDd erythrocytes. However, in normal and 

G6PDd erythrocytes, Res partially attenuate oxidative stress generated by PQ metabolites (5-HPQ, 

5,6-OQPQ, and MHQ). Quer had the ability to generate oxidative stress in normal and G6PDd 

erythrocytes. Like Res, Quer also partially attenuate PQ-metabolites-induced oxidative stress in 

human erythrocytes. 
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Figure 3.5: ROS generation due to treatment with 5-HPQ (A, B, C, D, E and F), 5-HPQ + Mel (A 
and B), 5-HPQ + Res (C and D) and 5-HPQ + Quer in (E and F) normal and (B, D and F) G6PDd 
human erythrocytes at 120 minutes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. **p < 0.01, ***p < 0.001, ****p < 0.0001 compared with 5-HPQ-treated 
erythrocytes at corresponding concentration. RFU- Relative fluorescence unit. 
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Figure 3.6: ROS generation due to treatment with 5,6-OQPQ (A, B, C, D, E and F), 5,6-OQPQ + 
Mel (A and B), 5,6-OQPQ + Res (C and D) 5,6-OQPQ 5-HPQ + Quer in (E and F) normal and (B, 
D and F) G6PDd human erythrocytes at 120 minutes. Each data point represents mean ± SE of at 
least duplicate observations. The results were statistically analyzed with GraphPad Prism® with 
two-way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were 
considered as statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
compared with 5,6-OQPQ -treated erythrocytes at corresponding concentration. RFU- Relative 
fluorescence unit. 
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Figure 3.7: ROS generation due to treatment with MHQ (A, B, C, D, E and F), MHQ + Mel (A 
and B), MHQ + Res (C and D) and MHQ + Quer in (E and F) normal and (B, D and F) G6PDd 
human erythrocytes at 120 minutes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared with MHQ-
treated erythrocytes at corresponding concentration. RFU- Relative fluorescence unit. 
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3.5.3. Estimation of intraerythrocytic reduced glutathione (GSH) levels.  

 To estimate the effect of NQO2 inhibitors (Mel, Res, and Quer) on PQ metabolite (5-HPQ, 

5,6-OQPQ, and MHQ) induced-GSH depletion in normal and G6PDd human erythrocytes, an 

enzymatic luciferase assay was used. Co-treatment of NQO2 inhibitors (Mel, Res, and Quer) with 

PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ) did not have any significant effect on GSH level 

as compared to that of PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ) alone in normal 

erythrocytes (Figure 3.8, 3.9 and 3.10).  

 Co-treatment of NQO2 inhibitors (Mel, Res, and Quer) with 5-HPQ caused further 

depletion in GSH level as caused by 5-HPQ alone in G6PDd human erythrocytes. However, this 

effect is not significant (Figure 3.8). Similarly, co-exposure of NQO2 inhibitors (Mel, Res, and 

Quer) with 5,6-OQPQ caused further depletion in GSH level as caused by 5,6-OQPQ alone in 

G6PDd human erythrocytes. However, this effect is not significant (Figure 3.9). Though, co-

exposure of NQO2 inhibitors (Mel, Res, and Quer) with MHQ did not have any significant effect 

on GSH level as compared to that of MHQ alone in normal erythrocytes (Figure 3.10).  

 These results suggest that cotreatment of NQO2 inhibitors (Mel, Res, and Quer) with PQ 

metabolites (5-HPQ, 5,6-OQPQ and MHQ) had no significant effect on PQ metabolites-induced 

depletion in GSH levels in normal and G6PDd human erythrocytes. 
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Figure 3.8: Intraerythrocytic GSH levels due to treatment with 5-HPQ (A, B, C, D, E and F), 5-
HPQ + Mel (A and B), 5-HPQ + Res (C and D) and 5-HPQ + Quer in (E and F) normal and (B, D 
and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant. *p < 0.05 compared with 5-HPQ-treated erythrocytes at corresponding 
concentration. 
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Figure 3.9: Intraerythrocytic GSH levels due to treatment with 5,6-OQPQ (A, B, C, D, E and F), 
5,6-OQPQ + Mel (A and B), 5,6-OQPQ + Res (C and D) and 5,6-OQPQ + Quer in (E and F) 
normal and (B, D and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at 
least duplicate observations. The results were statistically analyzed with GraphPad Prism® with 
two-way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were 
considered as statistically significant. **p < 0.01 compared with vehicle control erythrocytes at 
corresponding concentration. 
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Figure 3.10: Intraerythrocytic GSH levels due to treatment with MHQ (A, B, C, D, E and F), 
MHQ + Mel (A and B), MHQ + Res (C and D) and MHQ + Quer in (E and F) normal and (B, D 
and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant.  
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3.5.4. Estimation of intraerythrocytic total glutathione levels. 

 Total intraerythrocytic glutathione level was also measured by enzymatic luciferase assay 

using TCEP as reducing agent to thiol (Winther and Thorpe 2014). The results showed that co-

treatment of NQO2 inhibitors (Mel, Res and Quer) with PQ metabolites (5-HPQ, 5,6-OQPQ and 

MHQ) did not have any significant effect on total GSH level as compared to that of PQ metabolites 

(5-HPQ, 5,6-OQPQ and MHQ) alone in normal and G6PDd human erythrocytes (Figure 3.11 - 

Figure 3.13). 
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Figure 3.11: Intraerythrocytic total GSH levels due to treatment with 5-HPQ (A, B, C, D, E and 
F), 5-HPQ + Mel (A and B), 5-HPQ + Res (C and D) and 5-HPQ + Quer in (E and F) normal and 
(B, D and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at least 
duplicate observations. The results were statistically analyzed with GraphPad Prism® with two-
way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered 
as statistically significant.  
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Figure 3.12: Intraerythrocytic total GSH levels due to treatment with 5,6-OQPQ (A, B, C, D, E 
and F), 5,6-OQPQ + Mel (A and B), 5,6-OQPQ + Res (C and D) and 5,6-OQPQ + Quer in (E and 
F) normal and (B, D and F) G6PDd human erythrocytes. Each data point represents mean ± SE of 
at least duplicate observations. The results were statistically analyzed with GraphPad Prism® with 
two-way ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were 
considered as statistically significant. ***p < 0.001 compared with 5,6-OQPQ-treated erythrocytes 
at corresponding concentration. 
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Figure 3.13: Intraerythrocytic total GSH levels due to treatment with MHQ (A, B, C, D, E and F), 
MHQ + Mel (A and B), MHQ + Res (C and D) and MHQ + Quer in (E and F) normal and (B, D 
and F) G6PDd human erythrocytes. Each data point represents mean ± SE of at least duplicate 
observations. The results were statistically analyzed with GraphPad Prism® with two-way 
ANOVA followed by Tukey’s multiple comparison test and P values <0.05 were considered as 
statistically significant.  
 



www.manaraa.com

87 
 

3.5.5. Determination of phosphatidylserine exposure in human erythrocytes. 

 The flow cytometric assay employing FITC Annexin V binding assay was used to 

determine phosphatidylserine externalization in normal and G6PDd erythrocytes. Translocation of 

phosphatidylserine on the outer membrane of erythrocytes due to treatment with 5,6-OQPQ (25 

µM) alone and in combination with Quer (100 µM) and a comparative evaluation of translocation 

of phosphatidylserine in normal and G6PDd erythrocytes due to 5,6-OQPQ and 5,6-OQPQ + Quer 

exposure was done. Quer alone did not have any significant effect on phosphatidylserine 

externalization in normal and G6PDd erythrocytes (Figure 3.14). Treatment with 5,6-OQPQ and 

5,6-OQPQ + Quer significantly induced phosphatidylserine externalization in both normal and 

G6PDd erythrocytes. Treatment with 5,6-OQPQ and 5,6-OQPQ + Quer induced significantly 

higher phosphatidylserine externalization in G6PDd as compared to normal erythrocytes (Figure 

3.14). Thus, these results suggest that 5,6-OQPQ and 5,6-OQPQ + Quer caused externalization of 

phosphatidylserine on the outer surface of G6PDd human erythrocytes. Co-exposure of Quer with 

5,6-OQPQ did not have any additional effect on phosphatidylserine externalization caused by 5,6-

OQPQ alone in normal and G6PDd erythrocytes (Figure 3.14). 
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Figure 3.14: Phosphatidylserine exposure induced by 5,6-OQPQ, Quer and 5,6-OQPQ+ Quer in 
normal and G6PDd human erythrocytes with.  Each data point represents mean ± SE of at least 
duplicate observations. The results were analyzed with GraphPad Prism® with two-way ANOVA 
followed by Tukey’s multiple comparison test and P values <0.05 were considered as statistically 
significant. *p < 0.05, ****p < 0.0001 compared with corresponding erythrocyte and vehicle 
control. ap < 0.0001 compared with normal human erythrocytes exposed to corresponding 
treatment (within group). 
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3.5.6. Computational docking. 

(Leung and Shilton 2013) demonstrated the involvement and importance of water-

mediated interactions of PQ with the NQO2 enzyme. Also, the presence of water molecules plays 

an important role in the prediction of accurate poses/orientation of ligand−protein interactions. 

Therefore, the water molecules in the crystal structure near 5Å of ligand binding site were kept. 

The docking of primaquine (PQ), PQ metabolites (5-HPQ, 5,6-OQPQ, and MHQ), menadione and 

melatonin using Glide employing extra precision (XP) docking method. PQ, Mel (NQO2 

inhibitor), and menadione (NQO2 substrate) were used as reference compounds for this study. The 

docking pose of PQ in our study showed the identical binding pose as shown in NQO2-primaquine 

X-ray structure (4FGJ) (Figure 15). Further protein-ligand interactions study from docking 

confirmed that PQ occupied the identical active site pocket and interacted with the key binding 

site residues. The docking pose and interactions of menadione with NQO2 also matches with the 

2QR2 crystal structure. This confirmed that the parameters set for Glide-XP docking mode were 

reliable. The Glide gscores and binding free energies of preferred binding poses of ligands with 

protein (4FGJ) are shown in Table 3.1. Glide gscore is a scoring function which approximates the 

ligand binding free energy. The more negative ligand binding free energy suggests tighter binding 

between ligand and protein. These computational docking results demonstrated that water 

molecules play an important role in the interaction between ligands and human NQO2.  

Glide gscores and binding free energies of PQ (Isomers; R and S) indicates that PQ has 

strong binding affinity towards NQO2 compared to melatonin (Table 3.1). These results were 

consistent with experimental results (Ki of PQ = 1.04 µM and IC50 of Mel = 41.5 µM) (Ferry et 

al. 2010; Graves et al. 2002). However, the PQ metabolite, R/S-5-HPQ showed slightly better 

docking scores compared to R/S- PQ, which suggests R/S-5-HPQ may have slightly better binding 
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with NQO2 compared to PQ.  

The preferred binding poses of R/S-5-HPQ, R/S-PQ, S-PQ, R/S-5,6-OQPQ and MHQ in 

human NQO2 are shown in Figure 3.15. A detailed observation indicates that two water 

participates in the interaction between R/S-5-HPQ and NQO2 protein. R/S-5-HPQ interacted via 

water-mediated hydrogen-bond between the nitrogen of quinoline ring with ASN161 and another 

water-mediated hydrogen-bond between protonated amine (side chain) of R/S-5-HPQ and GLN 

122. A hydrogen bond between protonated amine (side chain) of R/S-5-HPQ and GLU 193 was 

also observed (Figure 3.16). The quinoline ring of R-PQ displayed π-π stacking with TRP 105 and 

PHE 178. The protonated amine of the side chain of R-PQ formed salt bridge interactions with 

GLU 193. The protonated amine of the side chain of R-PQ also formed a hydrogen bond with a 

water molecule. (Figure 3.17.A). The quinoline ring of S-PQ displayed π-π stacking with TRP 105. 

S-PQ interacted via water-mediated hydrogen- bonding between the nitrogen of quinoline ring 

with ASN161 and an additional water-mediated hydrogen- bonding between protonated amine 

(side chain) of S-PQ and GLN 122 was also observed. A hydrogen bonding between protonated 

amine (side chain) of S-PQ and GLU 193 was also seen (Figure 3.17.B).  

The quinoline ring of R/S-5,6-OQPQ displayed π-π stacking with TRP 105. The oxygen 

atom present at the 6th position of quinoline ring in R/S-5,6-OQPQ interacted with ASN161 via 

water-mediated hydrogen-bonding. The protonated amine of the side chain of R/S-5,6-OQPQ 

formed another water-mediated hydrogen- bonding with GLN 122 and a hydrogen bond with GLU 

193 (Figure 3.18). The docking pose of Mel exhibited π-π stacking with indole ring and TRP 105, 

and an H-bond between the oxygen of acyl group of the side chain of Mel and backbone of GLN 

121 was observed (Figure 3.19). Menadione, also known as vitamin K3, exhibited strong 

hydrophobic interactions with Trp105, Phe106, Phe126, and Phe178. Menadione also interacted 
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with ASN161 and carbonyl oxygen at the C1 position via water-mediated H-bonding (Figure 3.20). 

The docking pose of our study matches well with the pose reported in human quinone reductase 

type 2, complex with menadione (PDB ID: 4FGJ). 

 The superimposition of most preferred binding poses of 5-HPQ and Mel in the binding 

pocket of NQO2 suggest that they both bind in the similar orientation and the aromatic rings of 5-

HPQ and Mel were parallel to isoalloxazine ring of FAD (Figure 3.19). Careful observation of 

most preferred binding poses of other PQ metabolites suggests that other PQ metabolites orient in 

a similar fashion as S-PQ and Mel and one of the aromatic rings of these metabolites was parallel 

to isoalloxazine ring of FAD (Figure. 3.15, 3.21 and 3.22). These results indicate that like PQ, 

these metabolites of PQ may have a stronger binding affinity towards NOQ2 enzyme. 
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Table 3.1: The docking scores of best binding poses of PQ, PQ metabolites, and Melatonin in a 
human NQO2 protein having water molecules in their binding pocket. 
 

Ligands Glide gscore (kcal/mol) Prime MM-GBSA dG binding 
(kcal/mol) 

R-5-HPQ −8.514 −68.039 

S-5-HPQ −8.389 −69.046 

R-PQ −8.313 −68.658 

S-PQ −8.290 −69.425 

S-5,6-OQPQ −7.300 −55.127 

R-5,6-OQPQ −7.268 −55.120 

MHQ −6.564 −50.514 

Melatonin −6.431 −63.846 

Menadione −5.957 −39.439 
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Figure 3.15: The most preferred binding poses of (A) R-5-HPQ (carbon in maroon) and S-5-
HPQ (carbon in plum), (B) R-PQ (carbon in turquoise) and S-PQ (carbon in yellow) and (C) R-
5,6-OQPQ (carbon in grey) and S-5,6-OQPQ (carbon in purple) and (D) MHQ (carbon in pink) 
with NQO2.  
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Figure 3.16: The 2D interactions of the most preferred binding pose of (A) R-5-HPQ and (B) S-
5-HPQ. 
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Figure 3.17: The 2D interactions of the most preferred binding pose of (A) R-PQ, and (B) S-PQ. 
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Figure 3.18: The 2D interactions of the most preferred binding pose of (A) R-5,6-OQPQ, and 
(B) S--5,6-OQPQ. 
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Figure 3.19: The 2D interactions diagram of the most preferred binding pose of melatonin 
(Mel). 
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Figure 3.20: The 2D interactions diagram of the most preferred binding pose of menadione. 
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Figure 3.21: Overlay of superimposed poses of melatonin (carbon in turquoise, ball and stick 
model) and S-PQ (carbon in yellow, ball and stick model) after docking in NQO2 (4FGJ). FAD 
is shown in carbon in blue. Chain B (green) and chain A (red) are represented in cartoon 
representations.  
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Figure 3.22: Overlay of superimposed poses of (A) R-5-HPQ (carbon in maroon), S-5-HPQ 
(carbon in plum), R-PQ (carbon in turquoise), S-PQ (carbon in yellow), R-5,6-OQPQ (carbon in 
grey), S-5,6-OQPQ (carbon in purple), and MHQ (carbon in pink) and (B) melatonin (carbon in 
turquoise), S-PQ (carbon in yellow) and menadione (carbon in orange) after docking in NQO2 
(4FGJ). FAD is shown in carbon in blue. Chain B (green) and chain A (red) are represented in 
cartoon representations. 
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3.6. DISCUSSION 

 NQO2 is an FAD-linked oxidoreductive enzyme that catalyzes mandatory two-electron 

reductions of quinone to hydroquinones without forming highly reactive semiquinones and free 

radicals (Foster et al. 2000; Vella et al. 2005). The NQO2 acts as a detoxification enzyme for 

quinones (Graves et al. 2002). Quinones are redox active molecules and involve in a redox cycle 

with their semiquinone radicals. This redox cycling causes generation of superoxide radicals. 

Production of ROS leads to oxidative stress within the cells and causes oxidation of cellular 

macromolecules, including DNA, lipids, and proteins (Bolton et al. 2000). Human erythrocytic 

NQO2 is the only protein target identified for PQ (Ki-1.04±0.38 µM) (Graves et al. 2002; Murce 

et al. 2015). However, the potential implications of binding of PQ with NQO2 in efficacy and/or 

toxicity of PQ are not very clear. Previous kinetics studies demonstrated that PQ preferentially 

binds to the oxidized state of NQO2 and shows competitive inhibition against the electron donating 

co-factor dihydronicotinamide riboside (NRH), and FADH2 (Leung and Shilton 2013).  

Current studies are focused on investigating the function of NQO2, a cytosolic flavoprotein 

enzyme involved in metabolic detoxification/activation of hemotoxic metabolites of PQ, in PQ-

induced hemolytic anemia. In this study, the selective and potent inhibitors of NQO2 namely, 

melatonin (Mel) (IC50 = 41.5±1.5µM), resveratrol (Res) (IC50 = 0.143±0.05 µM) and quercetin 

(Quer) (IC50 = 1.4±0.1 µM) (Ferry et al. 2010; Boutin et al. 2005) were used as the probes to 

understand the hemolytic toxicity of PQ. Studies were further extended to investigate the  

interactions between crystal structure of human NQO2 (PBD: 4FGJ) and PQ metabolites (5-HPQ, 

5,6-OQPQ, and MHQ) using computational molecular docking approach. 

Mel potentiated the hemotoxicity when the human erythrocytes were cotreated  with PQ 

metabolites and Mel. Mel cotreatment increased 5-HPQ, 5,6-OQPQ and MHQ  induced 
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methemoglobin accumulation and oxidative stress generation in normal as well as G6PDd 

erythrocytes. Mel also potentiated GSH depletion caused by 5-HPQ, 5,6-OQPQ selectively in 

G6PDd erythrocytes only. Similarly, Res cotreatment with also augmented 5-HPQ, 5,6-OQPQ and 

MHQ  induced methemoglobin accumulation. Res partially attenuated 5-HPQ, 5,6-OQPQ and 

MHQ induced oxidative stress in both normal and G6PDd erythrocytes. This effect of resveratrol 

may be due its antioxidant properties (Farris et al. 2013; Zhang et al. 2014).  Res did not potentiate 

GSH depletion caused by 5-HPQ and  5,6-OQPQ selectively in G6PDd erythrocytes. Quer showed 

hemolytic toxicity properties. It significantly increased methemoglobin and generated oxidative 

stress in normal and G6PDd erythrocytes and caused depletion in GSH levels selectively in G6PDd 

erythrocytes. Quer co-treatmnet synergistically increased 5-HPQ, 5,6-OQPQ and MHQ  induced 

methemoglobin accumulation and did not cause further depletion in GSH levels caused by 5-HPQ, 

5,6-OQPQ alone.  Quer did not significantly increase PS exposure caused by 5,6-OQPQ. Earlier 

investigation have shown that quercetin oxidizes oxyhemoglobin and causes lysis of human 

erythrocyte (Galati et al. 2002). Quer is converted to oxidant products when act as an antioxidant 

and scavenges free radicals (Boots et al. 2007). The oxidant quinoid product(s) further results in 

the formation of superoxide ions, show high reactivity toward thiols and thus arylates glutathione 

and protein thiol groups. This further leads to depletion of glutathione, and impairs functions of 

several vital enzymes like glutathione reductase (Boots et al. 2003; Boots et al. 2007; Choi et al. 

2003; Galati et al. 2002; Metodiewa et al. 1999). The results of the current study suggest that co-

treatment of erythrocytes with NQO2 inhibitors and PQ metabolites potentiated the hemotoxicity 

compared to treatment with PQ metabolites alone.  Redox cycling of quinone and quinone-imine 

metabolites have been implicated in hemotoxicity of PQ (Marcsisin et al. 2016).  This suggests the 

potential role of NQO2 in detoxification of reactive metabolites of PQ from erythrocytes. Thus, 
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inhibiting NQO2 through potent and selective inhibitors of NQO2 is likely to alter the hemolytic 

toxicity of PQ metabolites.  

The computational docking results suggested that the presence of water molecules in the 

binding pocket of NQO2 played  critical role in binding of PQ and its metabolites with NQO2. 

The importance of water molecule in binding between NQO2 enzyme and PQ has been 

demonstrated earlier (Leung and Shilton 2013). Mel, Menadione, PQ and PQ metabolites bind at 

the same binding pocket with slight variations. The glide gscores suggest that PQ and its 

metabolites may have a better affinity towards NQO2 as compared to Mel and menadione.  

The biochemical results showed that in the presence of NQO2 inhibitors, the hemolytic 

toxicity caused by PQ metabolites is potentiated. The computational docking results suggest that 

PQ metabolites interact with NQO2 better that Mel and Menadione. Since in the presence of NQO2 

inhibitors, the toxicity is increased which suggest the protective role of the NQO2 enzyme. Based 

on biochemical and computational docking results, we believe that PQ metabolites might act as 

the substrates and NQO2 may be involve in the detoxification of PQ metabolites. These studies 

suggest protective role of NQO2 against PQ-induced hemolytic toxicity. 
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CHAPTER 4 

METABOLOMIC PROFILE OF NORMAL AND GLUCOSE-6-PHOSPHATE 

DEHYDROGENASE DEFICIENT ERYTHROCYTES TREATED WITH PRIMAQUINE 

METABOLITES. 

 

4.1. INTRODUCTION & RATIONALE 

Metabolites are small compounds, produced during metabolism and depict the functional 

readouts of cellular and biochemical states (Patti et al. 2012). The collection of metabolites within 

a cell, tissue, organ or biological fluid is known as metabolome (Patti et al. 2012). By analyzing 

the qualitative and quantitative profiles of the cellular metabolites, biochemical activity of the cell 

can be determined. Disease states and drug treatments alter biochemical pathways, which can be 

assessed through either targeted or untargeted comparative metabolomic workflows (Patti et al. 

2012; Kaddurah-Daouk et al. 2008).  

As mentioned earlier, the GSH-centered antioxidant functions are severely compromised 

in G6PDd individuals (Judith Recht 2014; Mason et al. 2007). Primaquine (PQ) generates 

oxidative stress in the erythrocytes, which is primarily initiated by the PQ metabolites produced 

through CYP-mediated pathways (Ganesan et al. 2009; Ganesan et al. 2012). However, the 

interplay between hemolysis, G6PD deficiency, ROS, and GSH is more complicated (Tang et al. 

2015). These findings necessitate examination of the metabolomes of normal and G6PDd human 

erythrocytes and also PQ-mediated changes in the metabolomes of normal and G6PDd human 
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erythrocytes. Thus, to explore potential mechanism(s) of PQ-induced hemolysis in G6PDd human 

erythrocytes, in vitro experiments with normal and G6PDd human erythrocytes treated with PQ 

metabolites were done to mimic the in vivo conditions during hemolytic anemia induced by PQ 

treatment and comparative untargeted metabolomics analyses were performed.  

 

4.2. HYPOTHESIS 

PQ metabolite, 5,6-orthoquinone primaquine (5,6-OQPQ) will alter the metabolite profile 

in normal and G6PDd erythrocytes. These changes will mechanistically support the 

pathophysiology of hemolysis in G6PDd erythrocytes. 

 

4.3. OBJECTIVE 

In this study, the changes in global cellular metabolism and compensatory responses in 

biochemical pathways of cellular metabolism in response to 5,6-OQPQ, metabolite of PQ were 

assessed using an untargeted metabolomic workflow. The conventional biochemical approach 

often concentrates on a single metabolite, one metabolic reaction, or a limited set of linked 

reactions and cycles. In contrast to the conventional biochemical approach, an untargeted LC-MS 

based metabolomic approach involves the simultaneous collection of qualitative and (relative) 

quantitative data for as many metabolites as possible to obtain insight into metabolism associated 

with conditions of interest, including disease state and drug exposure (Kaddurah-Daouk et al. 

2008). Also, metabolomics is thought to be a valuable tool for biomarker discovery, and in contrast 

to conventional clinical biomarkers and classical diagnostic approaches, metabolomics poses 

potential benefits in feasibility, specificity, and sensitivity (Kaddurah-Daouk et al. 2008). Thus, a 

global untargeted metabolomic approach may aid in discovery of new biomarkers for G6PD 
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deficiency and PQ-induced hemolysis in normal and G6PDd erythrocyte. 

 

4.4 MATERIALS AND METHODS. 

4.4.1. Chemicals 

 LC-MS grade methanol and water were purchased from Fisher Scientific (Waltham, MA, 

USA). 5,6-OQPQ was synthesized by Dr. N.P. Dhammika Nanayakkara at the National Centre for 

Natural Products Research (NCNPR), University of Mississippi. 

 

4.4.2. Procurement of human blood  

Blood was drawn from normal and glucose 6-phosphate dehydrogenase deficient (G6PDd) 

healthy volunteers in tubes containing citrate phosphate under an institutional review board (IRB) 

approved protocol.  

To analyze metabolite profiling of normal and G6PDd human erythrocytes, blood from 

four different batches was used. For three batches, G6PDd blood was taken from Caucasian male 

containing the Ser188Phe Mediterranean mutation and for one batch, G6PDd blood was taken 

from African American male carrying the classic A/A- combination of electrophoretic variant 

(Asn126Asp) and deficiency allele (Val68Met). 

To analyze the effect of 5,6-OQPQ, on global metabolomics profile of normal and G6PDd 

erythrocytes, G6PDd blood was taken from a Caucasian male containing the Ser188Phe 

Mediterranean mutation from a single batch. 

 

4.4.3. Sample preparation for metabolomic analysis 
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 For untargeted metabolomics experiments of normal and G6PDd human 

erythrocytes, the blood was centrifuged at 4500 × g at 40C for 10 minutes, and buffy coats were 

removed. The erythrocyte pellets were washed twice with phosphate buffered saline (110 mM 

sodium chloride, 20 mM disodium hydrogen phosphate and 4 mM potassium dihydrogen 

phosphate, pH 7.4). The aliquots (250 µL each) of washed erythrocytes pellets were stored at -

800C for further processing. The erythrocytes aliquots (250 µL) were removed from -800C freezer 

and lysed with 750 µL of cold acetonitrile: methanol: ammonium Bicarbonate (0.1 M, pH 8.0) 

(1:1:2) lysis buffer. The pellets were vortexed for 10 seconds, froze in liquid nitrogen for 10 

seconds, defrosted for 10 minutes and sonicated with a probe tip at 10 pulses. This step was 

repeated 3 times. Ice-cold methanol (500 μL) was added to each pellet to precipitate proteins and 

then incubated at -800C overnight. The samples were thawed, centrifuged (14000 × rpm at 4 0C 

for 15 minutes) and the supernatants were transferred to separate tubes. The supernatants were 

dried in a speed vac at low drying rate and kept at -800C until ready for metabolomics analysis. 

To analyze the effect of 5,6-OQPQ on global metabolomic profiles of normal and G6PDd 

erythrocytes, the blood was centrifuged at 4500 × g at 40C for 10 minutes, and buffy coats were 

removed. The erythrocyte pellets were washed twice with phosphate buffered saline (110 mM 

sodium chloride, 20 mM disodium hydrogen phosphate and 4 mM potassium dihydrogen 

phosphate, pH 7.4). The washed erythrocytes pellets were then re-suspended at 50% hematocrit in 

phosphate buffered saline (PBS). Normal and G6PDd human erythrocytes were treated with the 

5,6-OQPQ (50 µM) for different time periods (0, 30, 60, 120 and 480 minutes).  The reaction 

mixture contained 200 µl erythrocytes which were suspended in PBS with 50% hematocrit, 10 µl 

of 5,6-OQPQ and PBS to make a final volume of reaction mixture to 800 µl. The reaction mixture 

with appropriate control without 5,6-OQPQ was also set up simultaneously. The reaction mixtures 
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were incubated for 0, 30, 60, 120 and 480 minutes at 370C in a shaking water bath. The samples 

were removed from the water bath and centrifuged at 15294 X g for 10 min at 4 0C. The 

erythrocytes’ pellets were obtained from controls and 5,6-OQPQ treatments, flash frozen in liquid 

nitrogen for 30 seconds and then stored at -800C for further processing. The samples were thawed 

and 600 µL of chilled acetonitrile: methanol: ammonium bicarbonate (0.1 M, pH 8.0) (1:1:2) lysis 

buffer was added to the erythrocyte’s pellets. The samples were vortexed for 10 seconds, frozen 

in liquid nitrogen for 10 seconds, defrosted for 10 minutes, again vortexed for 10 seconds and 

sonicated in sonicator bath, in the presence of ice for 5 minutes at a time. The protein in the samples 

was precipitated using ice-cold methanol and then incubated at -800C overnight. The samples were 

thawed, centrifuged (20817 × g at 4 0C for 15 minutes), and the supernatants were transferred to 

fresh tubes. The supernatants were dried in a speed vac at low drying rate and kept at -800C until 

ready to use.  

  

4.4.4. UHPLC-MS analysis 

 The UHPLC-MS analysis was done by Dr. Alexandra Rutledge in Vanderbilt University. 

For LC-MS analysis, dried samples were reconstituted in 100 μl of acetonitrile/ water (80:20, v/v) 

and centrifuged for 5 min at 21130 X g to remove insoluble material. A quality control pool was 

prepared from equal volumes of each experimental sample. This sample was used as one measure 

of quality control during the experiment as well as for data-dependent acquisitions (DDA) for 

feature annotation. Full MS and DDA experiments were performed on a Q-Exactive HF hybrid 

quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped 

with a Vanquish UHPLC binary system and autosampler (Thermo Fisher Scientific, Germany). 

Extracts (5 µL injection volume) were separated on a SeQuant ZIC-p HILIC 5-μm, 2.1 mm × 150 
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mm column (normal versus G6PDd samples) or SeQuant ZIC-HILIC 3.5-μm, 2.1 mm × 100 mm 

column (Millipore Corporation, Darmstadt, Germany) (drug-dose-time course samples) held at 

40°C.  Liquid chromatography was performed at a 200 μl/min using solvent A (5mM Ammonium 

formate in 90% water, 10% acetonitrile) and solvent B (5mM Ammonium formate in 90% 

acetonitrile, 10% water) with the following gradient: 90% B for 2 minutes, 90-40% B over 16 

minutes, 40% B held 2 minutes, and 40-90% B over 10 minutes, 90% B held 10 minutes. 

 Full MS analyses were acquired over a mass range of m/z 70-1050 under an ESI positive 

profile mode with a resolution of 120000 and scan rate at ∼3.5 Hz. The automatic gain control 

(AGC) target was set at 1 × 106 ions, and maximum ion injection time (IT) was at 100 ms. Source 

ionization parameters were optimized with the spray voltage at 3.0 kV, and other parameters were 

as follows: transfer temperature at 280°C; S-Lens level at 40; heater temperature at 325°C; Sheath 

gas at 40, Aux gas at 10, and sweep gas flow at 1. Tandem spectra were acquired for quality control 

pool samples (described above) using a data-dependent scanning mode in which one full MS scan 

(m/z 70-1050) was followed by 2 MS/MS scans.  MS/MS scans are acquired in profile mode using 

an isolation width of 1.3 m/z, stepped collision energy (NCE 20, 40, 60), and a dynamic exclusion 

of 6s.  MS/MS spectra were collected at a resolution of 15000, with an automatic gain control 

(AGC) target set at 2 × 105 ions, and maximum ion injection time (IT) of 100 ms.   

 

4.4.5. Data processing 

Raw data were imported, processed, normalized, and reviewed using Progenesis QI v.2.1 

(Non-linear Dynamics, Newcastle, UK). All sample runs were aligned against a QC pool reference 

run, and peak picking was performed on individual aligned runs to create an aggregate data set. 

Features (retention time and m/z pairs) were combined using both adduct and isotope 
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deconvolution. Data were normalized to all compounds. Principle Components Analysis (PCA) 

was used to visualize clustering of data groups. Significance was assessed using p-values and fold 

changes calculated from combined feature abundance data.  

  Tentative and putative annotations (Schrimpe-Rutledge et al. 2016) were made using 

experimental accurate mass measurements (< 5 ppm error), isotope distribution similarity, 

predicted formula (Compound Discoverer 2.0.0.303, Thermo) and fragmentation spectrum 

matching by searching mzCloud, the Human Metabolome Database (HMDB), METLIN, 

MassBank, Waters Metabolic Profiling CCS Library, and NIST 14 databases. Annotations were 

filtered for endogenous small molecules present in the HMDB database and classified into 

confidence levels based on supporting evidence. Level 2: putative identification match of 

experimental accurate mass (mass tolerance ± 5 ppm), predicted formula, and MS/MS spectrum 

to a spectral library, and Level 3: tentative structure match of experimental accurate mass (mass 

tolerance ± 5 ppm) and predicted formula to HMDB database. The workflow proposed for 

metabolite identification is shown in Figure 4.1 (Schrimpe-Rutledge et al. 2016). 

 

4.4.6. Statistical analysis 

For statistical analysis, ANOVA was performed in Progenesis QI v.2.1 (Non-linear 

Dynamics, Newcastle, UK) and a p-value of less than 0.05 was considered significant. 
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Figure 4.1: Proposed workflow for metabolite identification (Schrimpe-Rutledge et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

112 
 

4.5. RESULTS 

4.5.1 Different metabolic profile of normal and G6PDd erythrocytes:  

To compare global metabolomic profiles, normal and G6PDd erythrocytes, the 

erythrocytes were lysed and then analyzed by UHPLC-MS. Principal component analysis of the 

metabolomic dataset showed clustering of untreated normal and G6PDd erythrocytes sample 

groups (Figure 4.2). The raw data was processed and analyzed by Progenesis QI v.2. After 

annotation, 87 metabolites were tentatively or putatively identified (Table 4.1). Pathway analysis 

of these metabolites was performed using MetaboAnalyst 3.0, an open-source web application 

(Figure. 4.3; Table 4.2) (Xia and Wishart 2016; Xia et al. 2015). When MetaboAnalyst is used to 

analyze pathway of given metabolites, it matches all pathways on the basis of p values and pathway 

impact values. The p values and pathway impacts values are calculated from pathway enrichment 

analysis and pathway topology analysis respectively. In pathway analysis graphs, each circle 

represents a pathway. As the pathway impact values increases, the size of circle increases and as 

the p values increases the color of circle changes from yellow to red (yellow circle: p value less; 

red circle: p values higher). Among 87 metabolites there were 29 metabolites which showed fold 

change ≥ 1.5 in G6PDd erythrocytes as compared to normal erythrocytes (Figure. 4.4). There were 

16 and 13 metabolites which were upregulated and downregulated in G6PDd erythrocytes (Figure 

4.5 and Figure 4.6). The 29 metabolites which displayed fold change ≥ 1.5 in G6PDd erythrocytes 

as compared to normal erythrocytes were also analyzed by MetaboAnalyst 3.0 to identify the major 

pathways which were over-represented in G6PDd erythrocytes (Figure 4.7; Table 4.3). 

Methylimidazole acetaldehyde, a histamine metabolite was significantly higher (14-fold) 

in G6PDd erythrocytes (Figure 4.5)  (Zimatkin and Anichtchik 1999). Carnitine and its derivative 
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namely hydroxybutyrylcarnitine, heptadecanoylcarnitine, stearoylcarnitine, carnitine, and 

propionylcarnitine were significantly higher in G6PDd erythrocytes (Figure 4.5). Carnitine and 

derivatives of carnitine participate in lipid oxidation (Darghouth et al. 2011).  Biotin amide and 

trigonelline levels were increased in G6PDd (Figure 4.5). Levels of amino acids including leucine, 

nor-leucine, aspartic acid and derivatives of amino acids namely homo-arginine, N(6)-

methyllysine and alpha-N-Phenylacetyl-L-glutamine were increased in G6PDd erythrocytes 

(Figure 4.5). 5'-Methylthioadenosine and hypoxanthine were also upregulated in G6PDd 

erythrocytes (Figure 4.5). 5'-Methylthioadenosine plays an important role in methionine, and 

purine salvage pathways (Avila et al. 2004) and hypoxanthine is a byproduct of ATP catabolism 

(Farthing et al. 2015). 

Metabolites that participate in GSH pathway including GSH, ophthalmic acid, and 

glutamic acid were significantly lower in G6PDd erythrocytes (Figure 4.6). Levels of an amino 

acid such as asparagine and taurine, and metabolites of amino acid, for example, pipecolic acid, a 

metabolite of lysine, was lower in G6PDd erythrocytes (Figure 4.6). Further, several metabolites 

of fatty acid (N-decanoylglycine and N-undecanoylglycine) (Cruickshank-Quinn et al. 2014) and 

of glycerophospholipid  pathway including choline, neurine and LysoPC(16:0) were lower in 

abundance (Gibellini and Smith 2010; Tweedie et al. 2006; Saito et al. 2014). AMP, the precursor 

of ATP and ergothioneine, antioxidant and metabolite of histidine were also low in G6PDd 

erythrocytes (Figure 4.6).  

These results suggest that the histidine, GSH-Methionine-Glutamate, purine, 

glycerophospholipid and fatty acid oxidation pathways were greatly affected in G6PDd 

erythrocytes.  
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Figure 4.2: Metabolome changes in normal and G6PDd human erythrocytes in in normal-G6PDd 
experiment. Data were analyzed in principal component analysis plot. The score plot for normal 
(yellow) and G6PDd (blue) were shown (n=8). Each point represents an individual sample’s data 
as a single unit. Clustering of the sample types shows the consistency of profiles between groups. 
X axis represent principal component 1 (PCA 1) and Y axis represent principal component 2 (PCA 
2). 
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Table 4.1: The metabolites annotated (identified) in normal and G6PDd human erythrocytes in 
normal-G6PDd experiment. 
 

HMDB id Metabolite name 
HMDB00034 Adenine 
HMDB00043 Betaine 
HMDB00045 Adenosine monophosphate 
HMDB00062 L-Carnitine 
HMDB00064 Creatine 
HMDB00070 Pipecolic acid 
HMDB00086 Glycerophosphocholine 
HMDB00097 Choline 
HMDB00112 Gamma-Aminobutyric acid 
HMDB00125 Glutathione 
HMDB00128 Guanidoacetic acid 
HMDB00148 L-Glutamic acid 
HMDB00157 Hypoxanthine 
HMDB00158 L-Tyrosine 
HMDB00159 L-Phenylalanine 
HMDB00162 L-Proline 
HMDB00167 L-Threonine 
HMDB00168 L-Asparagine 
HMDB00172 L-Isoleucine 
HMDB00175 Inosinic acid 
HMDB00177 L-Histidine 
HMDB00187 L-Serine 
HMDB00191 L-Aspartic acid 
HMDB00201 L-Acetylcarnitine 
HMDB00210 Pantothenic acid 
HMDB00214 Ornithine 
HMDB00222 L-Palmitoylcarnitine 
HMDB00251 Taurine 
HMDB00267 Pyroglutamic acid 
HMDB00295 Uridine 5'-diphosphate 
HMDB00479 3-Methylhistidine 
HMDB00517 L-Arginine 
HMDB00562 Creatinine 
HMDB00641 L-Glutamine 
HMDB00670 Homo-L-arginine 
HMDB00687 L-Leucine 
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HMDB00696 L-Methionine 
HMDB00734 Indoleacrylic acid 
HMDB00824 Propionylcarnitine 
HMDB00848 Stearoylcarnitine 
HMDB00875 Trigonelline 
HMDB00902 NAD 
HMDB00904 Citrulline 
HMDB00929 L-Tryptophan 
HMDB00961 Farnesyl pyrophosphate 
HMDB01065 2-Hydroxyphenethylamine 
HMDB01173 5'-Methylthioadenosine 
HMDB01325 N6,N6,N6-Trimethyl-L-lysine 
HMDB01341 ADP 
HMDB01406 Niacinamide 
HMDB01458 Biotin amide 
HMDB01488 Nicotinic acid 
HMDB01511 Phosphocreatine 
HMDB01645 L-Norleucine 
HMDB02005 Methionine sulfoxide 
HMDB02038 N(6)-Methyllysine 
HMDB02064 N-Acetylputrescine 
HMDB02142 Phosphoric acid 
HMDB03045 Ergothioneine 
HMDB03337 Oxidized glutathione 

HMDB03431 L-Histidinol 
HMDB03464 4-Guanidinobutanoic acid 
HMDB04181 Methylimidazole acetaldehyde 
HMDB04296 Acrylamide 
HMDB04827 Proline betaine 
HMDB05065 Oleoylcarnitine 
HMDB05066 Tetradecanoylcarnitine 
HMDB05765 Ophthalmic acid 
HMDB06210 Heptadecanoyl carnitine 
HMDB06344 Alpha-N-Phenylacetyl-L-glutamine 
HMDB10382 LysoPC(16:0) 
HMDB10384 LysoPC(18:0) 
HMDB10386 LysoPC(18:2(9Z,12Z)) 
HMDB10399 LysoPC(22:1(13Z)) 
HMDB13127 Hydroxybutyrylcarnitine 
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HMDB13131 Hydroxyhexanoycarnitine 
HMDB13133 Methylmalonylcarnitine 
HMDB13267 N-Decanoylglycine 
HMDB13286 N-Undecanoylglycine 
HMDB31259 Neurine 
HMDB31641 Pyrrolidine 
HMDB32231 Dimethylethanolamine 
HMDB32330 4-Hydroxy-2-butenoic acid gamma-lactone 
HMDB41809 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol 
HMDB60067 CMP-2-aminoethylphosphonate 
HMDB60363 2,5-Dichloro-4-oxohex-2-enedioate 
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Table 4.2: Major pathways identified using MetaboAnalyst 3.0 for 87 metabolites annotated in 
normal and G6PDd human erythrocytes in normal-G6PDd experiment. 
. 
Pathway  Total Hits -Log (p) Impact 
Arginine and proline 77 14 18.32 0.51 
Glycine, serine and threonine 48 8 10.10 0.26 
Alanine, aspartate and glutamate 24 5 8.64 0.22 
Histidine 44 7 7.74 0.79 
Glutathione 38 5 5.57 0.25 
Cysteine and methionine 56 5 3.94 0.10 
Glycerophospholipid 39 4 3.78 0.03 
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Figure 4.3: Pathway analysis of 87 metabolites identified between normal and G6PDd 
erythrocytes using MetaboAnalyst 3.0 in normal-G6PDd experiment. 
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Figure 4.4: Metabolite fold change in G6PDd erythrocytes versus normal erythrocytes. n = 4. Fold 
change ≥ 1.5. Statistical differences between normal and G6PD-deficient cells were determined 
by ANOVA. P values <0.05 were considered significant (*p < 0.05 and **p < 0.01). 
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Figure 4.5: Metabolites which were upregulated (fold change ≥ 1.5) in G6PDd erythrocytes. In 
the figure, from top to bottom is largest fold change to smallest. Each bar represents mean of 4 
experiments, and each experiment had 2 technical replicates. x-axis = Log2 normalized abundance 
scale. Statistical differences between normal and G6PDd erythrocytes were determined by 
ANOVA. p-value ≤ 0.05; Error bars represent 95% confidence; Significance values * ≤ 0.05, ** ≤ 
0.01. 
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Figure 4.6: Metabolites which were downregulated (fold change ≥ 1.5) in G6PDd erythrocytes. 
In the figure, from top to bottom is largest fold change to smallest. Each bar represents mean of 4 
experiments, and each experiment had 2 technical replicates. x-axis = Log2 normalized abundance 
scale. Statistical differences between normal and G6PDd erythrocytes were determined by 
ANOVA. p-value ≤ 0.05; Error bars represent 95% confidence; Significance values * ≤ 0.05, ** ≤ 
0.01. 
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Figure 4.7: Pathway analysis of 29 metabolites that were altered more than 1.5-fold between 
normal and G6PDd erythrocytes using MetaboAnalyst 3.0 in normal-G6PDd experiment. 
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Table 4.3: Major pathways affected, identified using MetaboAnalyst 3.0 for 29 metabolites which 
showed fold change ≥ 1.5 in G6PDd erythrocytes as compared to normal erythrocytes in normal-
G6PDd experiment. 
 
Pathway name Total Hits -Log (p) Impact 
Histidine 44 4 7.48 0.018 
Alanine, aspartate and glutamate 24 3 6.73 0.48 
Cysteine and methionine 56 3 4.31 0.05 
Glutathione 38 2 3.07 0.24 
Glycerophospholipid 39 2 3.03 0.024 

 

 

4.5.2. Distinct metabolic profile of normal and G6PDd erythrocytes due to 5, 6-OQPQ 

treatment. 

 To identify changes in cellular metabolism between normal and G6PDd 

erythrocytes mediated by 5, 6-OQPQ treatment, both donor groups erythrocytes were treated with 

25 µM 5, 6-OQPQ for 0, 30, 60, 120, and 480 minutes. The extractions of these erythrocytes were 

analyzed by UHPLC-MS as previously described and the raw data was processed and analyzed by 

Progenesis QI v.2. After annotation, total 111 metabolites were identified (Table 4.4). Further, 

pathway overrepresentation analysis of these 111 metabolites was performed using MetaboAnalyst 

3.0, an open-source web application (Figure. 4.8; Table 4.5) (Xia and Wishart 2016; Xia et al. 

2015). Among 111 metabolites there were 39 metabolites which showed a significant change in 

normal and G6PDd erythrocytes due to 5, 6-OQPQ treatment. The pathway analysis of these 39 

metabolites was done using MetaboAnalyst 3.0, a web application (Figure. 4.9; Table 4.6). 

However, among these 39 the metabolites, only those metabolites which showed fold change ≥ 1.2 

in normal and G6PDd erythrocytes due to treatment with corresponding time and were considered 

a meaningful change.  



www.manaraa.com

125 
 

In the normal-G6PDd experiment, fold change ≥ 1.5 was used and was considered 

meaningful change because in this experiment, the normal and G6PDd erythrocytes were drawn 

from different individuals. To make sure that the changes observed were only due to genetic 

deficiency and not due to variation in diet or life style, the fold change parameter was increased. 

In drug-time-response experiment the normal and G6PDd erythrocytes were drawn from single 

individuals thus, the changes observed here are more because of drug-treatment and thus the fold 

change ≥ 1.2 is considered meaningful. 
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Table 4.4: The metabolites annotated (identified) in normal and G6PDd deficient human 
erythrocytes treated with PQ, 5,6-OQPQ (25 µM) in drug-time-response experiment. 
 

HMDB id Metabolite name 
HMDB00214 Ornithine 
HMDB00062 L-Carnitine 
HMDB05765 Ophthalmic acid 
HMDB00045 Adenosine monophosphate 
HMDB01325 N6,N6,N6-Trimethyl-L-lysine 
HMDB04827 Proline betaine 
HMDB00479 3-Methylhistidine 
HMDB62709 S-Adenosyl-L-methionine 
HMDB00201 L-Acetylcarnitine 
HMDB03431 L-Histidinol 
HMDB00064 Creatine 
HMDB00489 Aspartylglycosamine 
HMDB00902 NAD 
HMDB13127 Hydroxybutyrylcarnitine 
HMDB00875 Trigonelline 
HMDB00187 L-Serine 
HMDB03640 Beta-Leucine 
HMDB13220 Beta-Citryl-L-glutamic acid 
HMDB13133 Methylmalonylcarnitine 
HMDB00824 Propionylcarnitine 

NA 2-Aminomethylpyrimidine 
HMDB00097 Choline 
HMDB00177 L-Histidine 
HMDB00086 Glycerophosphocholine 
HMDB01413 Citicoline 
HMDB00168 L-Asparagine 
HMDB01202 dCMP 
HMDB00295 Uridine 5'-diphosphate 
HMDB00182 L-Lysine 
HMDB00961 Farnesyl pyrophosphate 
HMDB03334 Symmetric dimethylarginine 
HMDB00267 Pyroglutamic acid 
HMDB00043 Betaine 
HMDB01201 Guanosine diphosphate 
HMDB60067 CMP-2-aminoethylphosphonate 
HMDB00251 Taurine 
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HMDB01511 Phosphocreatine 
HMDB00112 Gamma-Aminobutyric acid 
HMDB01539 Asymmetric dimethylarginine 
HMDB00033 Carnosine 
HMDB00641 L-Glutamine 
HMDB29198 Dimethylurea 
HMDB00929 L-Tryptophan 
HMDB29418 S-Cysteinosuccinic acid 
HMDB00191 L-Aspartic acid 
HMDB00630 Cytosine 
HMDB02044 8-Hydroxyguanosine 
HMDB02249 6-Methyltetrahydropterin 
HMDB00079 Dihydrothymine 
HMDB01406 Niacinamide 
HMDB03337 Oxidized glutathione 
HMDB00175 Inosinic acid 
HMDB13124 Propenoylcarnitine 
HMDB01341 ADP 
HMDB00217 NADP 
HMDB00538 Adenosine triphosphate 
HMDB13131 Hydroxyhexanoycarnitine 
HMDB32330 4-Hydroxy-2-butenoic acid gamma-lactone 
HMDB00562 Creatinine 
HMDB00939 S-Adenosylhomocysteine 
HMDB02224 5-Methyldeoxycytidine 
HMDB00167 L-Threonine 
HMDB01125 Inositol cyclic phosphate 
HMDB00157 Hypoxanthine 
HMDB00050 Adenosine 
HMDB00510 Aminoadipic acid 
HMDB60363 2,5-Dichloro-4-oxohex-2-enedioate 
HMDB00210 Pantothenic acid 

NA S-(1,2-Dicarboxyethyl) Glutathione 
HMDB00159 L-Phenylalanine 
HMDB06045 Dityrosine 
HMDB01458 Biotin amide 
HMDB00696 L-Methionine 
HMDB05065 Oleoylcarnitine 
HMDB00229 beta-Nicotinamide mononucleotide 
HMDB00687 L-Leucine 
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HMDB00904 Citrulline 
HMDB00172 L-Isoleucine 
HMDB01173 5'-Methylthioadenosine 
HMDB00148 L-Glutamic acid 
HMDB02142 Phosphoric acid 
HMDB13854 N4-Acetylsulfamethoxazole 
HMDB10382 LysoPC (16:0) 
HMDB00162 L-Proline 
HMDB00222 L-Palmitoylcarnitine 
HMDB01065 Phenyl ethanolamine 
HMDB00125 Glutathione 
HMDB00034 Adenine 
HMDB00725 4-Hydroxyproline 
HMDB02820 Methylimidazoleacetic acid 
HMDB01545 Pyridoxal 
HMDB00263 Phosphoenolpyruvic acid 
HMDB32538 Triethanolamine 
HMDB00517 L-Arginine 
HMDB00848 Stearoylcarnitine 
HMDB10384 LysoPC (18:0) 
HMDB00158 L-Tyrosine 
HMDB31641 Pyrrolidine 
HMDB13267 N-Decanoylglycine 
HMDB03045 Ergothioneine 
HMDB00070 Pipecolic acid 
HMDB01229 Dopaquinone 
HMDB01066 S-Lactoylglutathione 
HMDB13286 N-Undecanoylglycine 
HMDB04437 Diethanolamine 
HMDB02117 Oleamide 
HMDB13279 N-Nonanoylglycine 
HMDB00301 Urocanic acid 
HMDB13648 Palmitoleoyl Ethanolamide 
HMDB29598 Metenamine 
HMDB13034 Palmitoylglycine 
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Table 4.5: Major pathways identified using MetaboAnalyst 3.0 for 111 metabolites annotated in 
drug-time-response experiment. 
 

Pathway name Total Hits -Log (p) Impact 
Arginine and proline 77 12 11.54 0.54 
Histidine 44 9 11.15 0.29 
Glycine, serine and threonine 48 7 6.71 0.25 
Alanine, aspartate and glutamate 24 5 6.70 0.79 
Glutathione 38 6 6.31 0.26 
Glycerophospholipid 39 6 6.17 0.08 
Nicotinate and nicotinamide 44 6 5.54 0.04 
Purine 92 9 5.42 0.26 
Cysteine and methionine 56 6 4.35 0.20 
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Figure 4.8: Pathway analysis of 111 metabolites identified in the drug-time-response experiment 
using MetaboAnalyst 3.0. 
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Table 4.6: Major pathways affected, identified using MetaboAnalyst 3.0 for 39 metabolites 
showed significantly changed in normal and G6PDd erythrocytes due to 5,6-OQPQ (25 µM) 
treatment as compared to untreated normal and untreated G6PDd erythrocytes with corresponding 
time point. 
 

Pathway name Total Hits -Log (p) Impact 
Purine 92 7 9.04 0.25 
Glutathione 38 4 6.70 0.24 
Arginine and proline 77 5 5.95 0.39 
Cysteine and methionine 56 4 5.26 0.16 
Glycerophospholipid 39 3 4.34 0.05 
Histidine 44 3 4.02 0.07 
Alanine, aspartate and glutamate 24 2 3.29 0.22 
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Figure 4.9: Pathway analysis of 39 metabolites showed significantly changed in normal and 
G6PDd erythrocytes due to 5,6-OQPQ treatment as compared to untreated normal and untreated 
G6PDd erythrocytes with corresponding time point. 
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4.5.2.1. Alterations in GSH-methionine-glutamic acid metabolism in normal and G6PDd 

erythrocytes due to 5, 6-OQPQ treatment. 

  The basal level of GSH precursor, DCE-GS (S-1,2-dicarboxyethyl-glutathione) and S-

lactoylglutathione were significantly increased in G6PDd erythrocytes. DCE-GS was elevated due 

to treatment in both erythrocyte groups. However, there was a nonspecific increase of DCE-GS 

was in both erythrocytes (Figure 4.10). The basal level of oxidized glutathione and glutamic acid 

were significantly lower in G6PDd erythrocytes (Figure 4.10 and 4.11). Oxidized glutathione was 

depleted in both erythrocytes at later time points (120 and 480 minutes) due to treatment (Figure 

4.10). The level of glutamic acid was depleted selectively in normal erythrocytes due to treatment 

at 120 and 480 minutes (Figure 4.11). The level of ophthalmic acid was significantly higher in 

both erythrocytes due to treatment at a corresponding time however significant accumulation of 

ophthalmic acid was in both erythrocytes due to incubation time (Figure 4.11). There was a 

depletion in SAM and 5-methylthioadenosine levels in both erythrocytes due to treatment as 

compared to untreated erythrocytes at a corresponding time (Figure 4.12). These results indicate 

that metabolites of the GSH-methionine-glutamate pathway were significantly changed in both 

erythrocytes due to treatment. The schematic diagram of the GSH-methionine-glutamate pathway 

was shown in Figure 4.13.  
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Figure 4.10: Distinct effect of 5, 6-OQPQ (25µM) on GSH metabolic pathway and precursors 
of GSH in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with 
an untargeted metabolomics workflow. Metabolites were annotated as previously described, and 
were mapped onto the GSH metabolic pathways. The levels of metabolites are expressed (Y-axis) 
as normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences between groups were determined by ANOVA; P values <0.05 were considered as 
statistically significant. *p < 0.05 compared with no treatment with corresponding erythrocytes at 
corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 0-
minute data represent pretreatment erythrocytes.  DCE-GS- S-(1,2-Dicarboxyethyl) Glutathione; 
GSH- Reduced glutathione; GSSG- Oxidized glutathione. 
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Figure 4.11: Distinct effect of 5, 6-OQPQ (25µM) on the glutamic acid metabolic pathway in 
normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with an 
untargeted metabolomics workflow. Metabolites were annotated as previously described, and were 
mapped onto the glutamic metabolic pathways. The levels of metabolites are expressed (y-axis) as 
normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences between groups were determined by ANOVA; P values <0.05 were considered as 
statistically significant*p < 0.05 compared with no treatment with corresponding erythrocytes at 
corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 0-
minute data represent pretreatment erythrocytes. 0-minute data represent pretreated erythrocytes. 
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Figure 4.12. Distinct effect of 5, 6-OQPQ (25µM) on the methionine metabolic pathway in 
normal and G6PD-deficient RBCs at 0, 30, 60, 120, and 480 minutes, and processed with an 
untargeted metabolomics workflow. Metabolites were annotated as previously described, and were 
mapped onto the methionine metabolic pathways. The levels of metabolites are expressed (Y-axis) 
as normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences between groups were determined by ANOVA; P values <0.05 were considered as 
statistically significant. *p < 0.05 compared with no treatment with corresponding erythrocytes at 
corresponding time. 0-minute data represent pretreatment erythrocytes. 0-minute data represent 
pretreated erythrocytes. SAH: S-Adenosylhomocysteine; SAM: S-Adenosyl-methionine. 
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Figure 4.13: Schematic diagram of glutathione-methionine-glutamic acid metabolism pathway. 
The metabolites colored in red, green and purple were identified in normal and G6PDd 
erythrocytes treated with 25µM 5, 6-OQPQ for 0, 30, 60, 120, and 480 minutes. Metabolites 
colored in black were intermediate of the pathway and were not identified. The metabolites in 
purple, red and green showed no change, increase and decrease respectively due to treatment. 
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4.5.2.2. Alternations in arginine-proline metabolism in normal and G6PDd erythrocytes due 

to 5, 6-OQPQ treatment. 

 The basal level of proline and arginine were significantly lower and higher in G6PDd 

erythrocytes, respectively. The levels of proline, arginine, and ornithine levels were significantly 

increased due to treatment in both erythrocytes. However, there was nonspecific depletion of 

proline, arginine, and ornithine in both erythrocytes due to incubation (Figure 4.14). These results 

suggest the metabolites of arginine-proline were significantly increased due to treatment in normal 

and G6PDd erythrocytes.  
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Figure 4.14: Distinct effect of 5, 6-OQPQ (25µM) on the arginine and proline metabolic 
pathway in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with 
an untargeted metabolomics workflow. Metabolites were annotated as previously described, and 
were mapped onto the arginine and proline metabolic pathways. The levels of metabolites are 
expressed (Y-axis) as normalized abundance. Each bar represents mean ± SD of at least three 
observations. Statistical differences were determined by ANOVA; P values <0.05 were considered 
as statistically significant. *p < 0.05 compared with no treatment with corresponding erythrocytes 
at corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 
0-minute data represent pretreatment erythrocytes. 0-minute data represent pretreated 
erythrocytes.  
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4.5.2.3. Alternations in purine and nicotinamide metabolism in normal and G6PDd 

erythrocytes due to 5, 6-OQPQ treatment. 

 There was an accumulation of ADP (adenosine diphosphate) and AMP (adenosine 

monophosphate) selectively in normal erythrocytes due to treatment. However, the levels of AMP 

were depleted selectively in G6PDd erythrocytes due to treatment. In addition, there was a 

nonspecific accumulation of ADP and AMP in both erythrocytes due to incubation. Adenine levels 

were significantly depleted in both erythrocytes due to treatment at later time points (120 and 480 

minutes) (Figure 4.15). The basal levels of IMP (inosine monophosphate) and GDP (guanosine 

diphosphate) were significantly lower and higher in G6PDd erythrocytes respectively. There was 

a depletion in IMP and GDP due to treatment in both erythrocytes. Hypoxanthine was accumulated 

in both erythrocytes in both erythrocytes due to treatment. There was nonspecific accumulation 

and depletion of IMP and hypoxanthine arginine and ornithine in both erythrocytes due to 

incubation (Figure 4.16). Furthermore, in the pyrimidine pathway, the NMN (nicotinamide 

mononucleotide) levels were significantly depleted in G6PDd erythrocytes due to treatment 

(Figure 4.17). These results suggest the metabolites of purine pathway were significantly altered 

due to treatment in normal and G6PDd erythrocytes. 



www.manaraa.com

141 
 

 

Figure 4.15: Distinct effect of 5, 6-OQPQ (25µM) on the purine (ATP and its precursor) 
metabolic pathway in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and 
processed with an untargeted metabolomics workflow. Metabolites were annotated as previously 
described, and were mapped onto the purine metabolic pathways. The levels of metabolites are 
expressed (-axis) as normalized abundance. Each bar represents mean ± SD of at least three 
observations. Statistical differences were determined by ANOVA; P values <0.05 were considered 
as statistically significant. *p < 0.05 compared with no treatment with corresponding erythrocytes 
at corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 
0-minute data represent pretreatment erythrocytes. ATP: Adenosine triphosphate. ADP: 
Adenosine diphosphate. AMP: Adenosine monophosphate. 
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Figure 4.16: Distinct effect of 5, 6-OQPQ (25µM) on the purine (IMP, hypoxanthine, and GDP) 
metabolic pathway in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and 
processed with an untargeted metabolomics workflow. Metabolites were annotated as previously 
described, and were mapped onto the purine metabolic pathways. The levels of metabolites are 
expressed (Y-axis) as normalized abundance. Each bar represents mean ± SD of at least three 
observations. Statistical differences were determined by ANOVA; P values <0.05 were considered 
as statistically significant. *p < 0.05 compared with no treatment with corresponding erythrocytes 
at corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 
0-minute data represent pretreatment erythrocytes. IMP: Inosine monophosphate. GDP: 
Guanosine diphosphate.  
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Figure 4.17: Distinct effect of 5, 6-OQPQ (25µM) on the NMN levels in normal and G6PDd 
erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with an untargeted metabolomics 
workflow. Metabolites were annotated as previously described. The levels of metabolites are 
expressed (Y-axis) as normalized abundance. Each bar represents mean ± SD of at least three 
observations. Statistical differences between 5, 6-OQPQ-treated normal and G6PD-deficient cells 
were determined by ANOVA; P values <0.05 were considered as statistically significant. *p < 0.05 
compared with no treatment with corresponding erythrocytes at corresponding time. 0-minute data 
represent pretreatment erythrocytes. 0-minute data represent pretreated erythrocytes. NMN: 
Nicotinamide mononucleotide. 
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4.5.2.4. Alternations in glycerophospholipid metabolism in normal and G6PDd erythrocytes 

due to 5, 6-OQPQ treatment. 

 The basal levels of GPC (glycerophosphocholine), lysophosphatidylcholines (LPC) (16:0) 

and lysophosphatidylcholines (18:0) were significantly lower in G6PDd erythrocytes (Figure 

4.18). GPC levels were elevated in normal and G6PDd erythrocytes due to treatment. LPC (16:0) 

and LPC (18:0) were depleted at 120 minutes in both normal and G6PDd erythrocytes and were 

increased selectively in G6PDd erythrocytes at 480 minutes due to treatment (Figure 4.18). 

Citicoline, a biomarker of chronic hemolysis and formed from phosphocholine (Paglia et al. 1983) 

was selectively accumulated in G6PDd erythrocytes due to treatment at all time points (Figure 

4.18). These results indicate the metabolites of glycerophospholipid pathway were significantly 

modified due to treatment in normal and G6PDd erythrocytes. 
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Figure 4.18: Distinct effect of 5, 6-OQPQ (25µM) on the glycerophospholipid metabolic 
pathway in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with 
an untargeted metabolomics workflow. Metabolites were annotated as previously described, and 
were mapped onto the glycerophospholipid metabolic pathways. The levels of metabolites are 
expressed (Y-axis) as normalized abundance. Each bar represents mean ± SD of at least three 
observations. Statistical differences were determined by ANOVA; P values <0.05 were considered 
as statistically significant.  *p < 0.05 compared with no treatment with corresponding erythrocytes 
at corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 
0-minute data represent pretreatment erythrocytes. GPC: Glycerophosphocholine; LPC (16:0): 
Lysophosphatidylcholines (16:0); LPC (18:0): Lysophosphatidylcholines (18:0). 
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4.5.2.5. Alternations in histidine metabolism in normal and G6PDd erythrocytes due to 5, 6-

OQPQ treatment. 

The basal level of ergothioneine, the natural metabolite of histidine metabolism and 

antioxidant was increased in G6PDd erythrocytes (Halliwell et al. 2016). The level of histidinol, 

the precursor of histidine and ergothioneine both were significantly higher in both erythrocytes 

due to treatment (Figure 4.19). These results showed that the precursor and metabolites of histidine 

were significantly elevated in erythrocytes due to treatment. 

 

4.5.2.6. Alternations in antioxidants in normal and G6PDd erythrocytes due to 5, 6-OQPQ 

treatment. 

The basal levels of antioxidant pantothenic acid and BCGA (beta-citryl-glutamic acid) 

were elevated in G6PDd erythrocytes and serine was depleted in G6PDd erythrocytes (Figure 

4.20). Treatment elevated lysine, BCGA, and serine in both erythrocytes at later time point (120 

and 480 minutes) suggesting that in response to treatment the antioxidant levels were increased as 

a compensatory mechanism. However, the levels of pantothenic acid were depleted selectively in 

G6PDd erythrocytes due to treatment (Figure 4.20). These results showed that treatment elevated 

antioxidants in both erythrocytes as a compensatory mechanism.  
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Figure 4.19: Distinct effect of 5, 6-OQPQ (25µM) on the histidine metabolic pathway in normal 
and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and processed with an untargeted 
metabolomics workflow. Metabolites were annotated as previously described, and were mapped 
onto the histidine metabolic pathways. The levels of metabolites are expressed (Y-axis) as 
normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences were determined by ANOVA; P values <0.05 were considered as statistically 
significant*p < 0.05 compared with no treatment with corresponding erythrocytes at corresponding 
time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 0-minute data 
represent pretreatment erythrocytes. 0-minute data represent pretreated erythrocytes.  
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Figure 4.20: Distinct effect of 5, 6-OQPQ (25µM) on the antioxidants namely, lysine, 
pantothenic acid, BCGA (beta-citryl-glutamic acid) and serine levels in normal and G6PDd 
erythrocytes at 0, 30, 60, 120, and 480 minutes, and analyzed for their metabolite profiles. The 
levels of metabolites are expressed (Y-axis) as normalized abundance. Each bar represents mean 
± SD of at least three observations. Statistical differences were determined by ANOVA; P values 
<0.05 were considered as statistically significant. *p < 0.05 compared with no treatment with 
corresponding erythrocytes at corresponding time. #p < 0.05 compared with pretreatment in normal 
erythrocyte at 0-minute. 0-minute data represent pretreatment erythrocytes. 0-minute data 
represent pretreatment erythrocytes. 0-minute data represent pretreated erythrocytes.  
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4.5.2.7. Alternations in hemolysis and oxidative stress biomarkers in normal and G6PDd 

erythrocytes due to 5, 6-OQPQ treatment. 

The basal levels of SDMA (symmetric dimethylarginine) and dityrosine were elevated in 

G6PDd erythrocytes, and ADMA (asymmetric dimethylarginine) was depleted in G6PDd 

erythrocytes (Figure 4.21). SDMA and ADMA were elevated due to treatment. SMDA selectively 

accumulated in G6PDd erythrocytes and ADMA was accumulated in both erythrocytes due to 

treatment. There was nonspecific depletion of SDMA and ADMA in both erythrocytes due to 

incubation. Dityrosine and dopaquinone were depleted in both erythrocytes due to treatment. There 

was the nonspecific elevation of dopaquinone in both erythrocytes due to incubation (Figure 4.21). 

These results showed that treatment affects hemolysis, oxidative stress and aging biomarker in 

both erythrocytes. 

 

4.5.2.8. Alternations in MTH, MTC, leucine, and phosphocreatine in normal and G6PDd 

erythrocytes due to 5, 6-OQPQ treatment. 

 The basal levels of MDC (5-methyldeoxycitidine) and phosphocreatine were elevated in 

G6PDd erythrocytes, and leucine was depleted in G6PDd erythrocytes (Figure 4.22). Treatment 

elevated levels of MDC and phosphocreatine and leucine in both erythrocytes. Levels of 

phosphocreatine were selectively increased in G6PDd erythrocytes. Treatment decreased MDC 

levels in both erythrocytes. There was a non-specific decrease in leucine in both erythrocytes due 

to incubation (Figure 4.22). 
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Figure 4.21. Distinct effect of 5, 6-OQPQ (25 µM) on SDMA, ADMA, dityrosine and 
dopaquinone levels in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, and 
analyzed for their metabolite profiles. The levels of metabolites are expressed (Y-axis) as 
normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences were determined by ANOVA; P values <0.05 were considered as statistically 
significant. *p < 0.05 compared with no treatment with corresponding erythrocytes at 
corresponding time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 0-
minute data represent pretreatment erythrocytes. 0-minute data represent pretreatment 
erythrocytes.0-minute data represent pretreated erythrocytes. SMDA: Symmetric 
dimethylarginine. ADMA: Asymmetric dimethylarginine. 
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Figure 4.22: Distinct effect of 5, 6-OQPQ (25µM) on the MTH, MDC, leucine and 
phosphocreatine levels in normal and G6PDd erythrocytes at 0, 30, 60, 120, and 480 minutes, 
and analyzed for their metabolite profiles. The levels of metabolites are expressed (Y-axis) as 
normalized abundance. Each bar represents mean ± SD of at least three observations. Statistical 
differences were determined by ANOVA; P values <0.05 were considered as statistically 
significant*p < 0.05 compared with no treatment with corresponding erythrocytes at corresponding 
time. #p < 0.05 compared with pretreatment in normal erythrocyte at 0-minute. 0-minute data 
represent pretreatment erythrocytes. 0-minute data represent pretreatment erythrocytes.0-minute 
data represent pretreated erythrocytes. MTH: 6-methyltetrahydropterin. MDC: 5-
methyldeoxycytidine. 
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4.5.3. Common metabolites in normal-G6PDd experiment and drug-time-response 

experiment. 

There were 66 metabolites which were commonly identified in both experiments. The 

detail of these metabolites with their normalized abundance was described in Table 4.7 and Table 

4.8. 
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Table 4.7: Lists of common metabolites annotated and their normalized abundance (Mean and 
SD) in normal erythrocytes in both normal-G6PDd experiment and drug-time-response 
experiment. 
  

Normal-G6PDd experiment Drug-time-response 
experiment  

Normal erythrocytes Normal erythrocytes 
Description Mean SD Mean SD 

2,5-Dichloro-4-oxohex 
-2-enedioate 

6298179.24 1656459.59 7245169.17 182649.31 

3-Methylhistidine 1753733.62 1384796.28 3948042.73 180334.33 
4-Hydroxy-2-butenoic acid  

gamma-lactone 
25642.31 9832.45 8218.88 325.28 

5'-Methylthioadenosine 329056.15 113843.19 496687.04 19056.17 
Adenine 19622.43 3235.87 97089.07 5978.72 

Adenosine monophosphate 323028.04 201345.04 265135.48 7599.72 
ADP 508146.89 185127.15 6251585.95 441201.68 

Betaine 9854665.06 1885975.93 13630389.61 144364.07 
Biotin amide 23259.56 11741.25 46354.69 3143.65 

Choline 7651067.75 4674310.49 7209640.73 82413.45 
Citrulline 1100310.44 257547.15 1838015.72 135396.53 
CMP-2-

aminoethylphosphonate 
85183.85 28629.68 228284.68 29300.48 

Creatine 28659415.84 1621178.31 3794777.46 96843.13 
Creatinine 4750868.75 654875.19 5927286.76 320104.43 

Ergothioneine 19394.73 16446.25 496498.76 238150.14 
Farnesyl pyrophosphate 448115.63 222499.17 221300.86 34919.04 

Gamma-Aminobutyric acid 43100.63 5042.56 97243.91 1851.78 
Glutathione 125006.72 149046.12 1300921.29 1437512.01 

Glycerophosphocholine 156883.04 95245.52 1546687.16 281379.69 
Hydroxybutyrylcarnitine 293870.74 153593.81 85144.68 4843.33 

Hypoxanthine 1239929.47 567572.48 32164.54 441.71 
Inosinic acid 206291.19 64272.42 3077085.13 189833.95 

L-Acetylcarnitine 19382135.22 7017580.19 983742.98 100682.97 
L-Arginine 533239.62 220127.71 8726580.48 203735.26 

L-Asparagine 312131.26 62672.68 709759.86 138856.18 
L-Aspartic acid 161911.30 98611.55 529903.46 26427.06 

L-Carnitine 8695931.51 3725851.54 1194144.18 37337.59 
L-Glutamic acid 659687.48 308042.27 13866888.96 591662.79 

L-Glutamine 1960260.06 464758.90 2290404.87 75011.39 
L-Histidine 238275.12 54713.43 1316890.00 92776.33 
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L-Histidinol 1397574.40 220727.26 10738833.53 271379.36 
L-Isoleucine 371135.47 148837.84 30319.23 1421.20 
L-Leucine 421042.54 161682.29 835375.28 26393.87 

L-Methionine 56142.99 21370.53 1015899.57 31817.46 
L-Norleucine 120161.11 76380.11 351802.04 43471.56 

L-Palmitoylcarnitine 1749789.01 793668.47 209141.10 64820.65 
L-Phenylalanine 386616.80 105705.49 680230.67 45358.84 

L-Proline 2034823.75 278503.60 3871337.20 96310.16 
L-Serine 85725.77 9614.63 59153.45 3300.20 

L-Threonine 233988.78 28823.87 259938.71 8920.35 
L-Tryptophan 91950.97 28817.73 312095.48 24446.90 

L-Tyrosine 257470.70 102429.84 924326.87 100488.95 
LysoPC(16:0) 9486034.38 2830304.04 1302394.23 111652.79 
LysoPC(18:0) 6216279.52 1978632.16 712508.48 214629.73 

Methylmalonylcarnitine 1192570.70 443762.38 3194952.66 335370.61 
N6,N6,N6-Trimethyl-L-

lysine 
2269710.97 439161.40 1956589.06 182540.22 

NAD 1651753.14 273296.52 3571121.70 553902.16 
N-Decanoylglycine 36969.16 8185.04 259693.71 21806.22 

Niacinamide 708690.92 237915.26 569419.44 59813.45 
N-Undecanoylglycine 354588.37 98940.10 1357004.19 213753.25 

Oleoylcarnitine 3311751.41 1366332.93 238627.04 162102.44 
Ophthalmic acid 86278.81 16946.20 114041.52 9521.48 

Ornithine 488951.99 61149.36 6306402.07 166234.33 
Oxidized glutathione 16500582.81 4649985.88 74975807.89 10812731.40 

Pantothenic acid 84864.84 81933.74 542893.97 24883.64 
Phosphocreatine 24083.34 12301.67 29944.26 3073.47 
Phosphoric acid 6554.04 3652.96 25247.93 958.86 
Pipecolic acid 358495.03 615310.98 192634.83 24032.17 
Proline betaine 7684600.13 6487641.04 2065.59 56.99 

Propionylcarnitine 3791068.47 1988628.24 5201753.34 141751.18 
Pyroglutamic acid 569409.76 132703.94 402319.93 23365.39 

Pyrrolidine 51841.72 7925.69 125610.72 6634.00 
Stearoylcarnitine 1024579.87 435731.70 192367.58 36543.47 

Taurine 231738.77 142558.67 74403.01 1873.79 
Trigonelline 180387.49 83212.35 411590.89 16623.84 

Uridine 5'-diphosphate 69506.67 17467.74 81930.23 9207.47 
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Table 4.8: Lists of common metabolites annotated and their normalized abundance (Mean and 
SD) in G6PDd erythrocytes in both normal -G6PDd experiment and drug-time-response 
experiment. 
  

Normal-G6PDd experiment Drug-time-response 
experiment  

G6PDd erythrocytes G6PDd erythrocytes 
Description Mean SD Mean SD 

2,5-Dichloro-4- 
oxohex-2-enedioate 

6012686.70 1031473.33 7371153.31 193531.88 

3-Methylhistidine 2188241.97 1156990.24 4873143.67 242237.33 
4-Hydroxy-2-butenoic acid  

gamma-lactone 
29555.50 4709.64 12488.81 361.42 

5'-Methylthioadenosine 508191.62 166106.38 493566.99 43573.48 
Adenine 18154.64 2560.71 98010.74 2608.14 

Adenosine monophosphate 123400.08 122174.01 868679.74 67304.35 
ADP 344986.02 212749.52 8096303.80 1237492.03 

Betaine 10641366.83 254947.72 14282662.76 462268.05 
Biotin amide 54683.89 21769.14 266174.56 23594.82 

Choline 3766634.26 2162376.67 3270526.40 71793.85 
Citrulline 1173147.68 231361.76 1554602.18 48458.02 

CMP-2-aminoethylphosphonate 116891.47 21765.10 234943.82 22384.23 
Creatine 26272575.53 1443005.23 5028598.27 130976.01 

Creatinine 4485204.43 288770.24 7785782.44 391986.21 
Ergothioneine 11405.99 4879.09 1305595.50 245722.26 

Farnesyl pyrophosphate 435064.96 68081.68 911107.34 88176.40 
Gamma-Aminobutyric acid 44774.88 6959.44 160266.65 6295.54 

Glutathione 18358.39 7455.32 306722.77 134150.23 
Glycerophosphocholine 115337.55 76257.86 816714.67 73415.76 
Hydroxybutyrylcarnitine 703192.14 268473.47 452286.21 9720.61 

Hypoxanthine 2257187.69 1328444.08 69256.37 3842.35 
Inosinic acid 209186.94 130924.29 2942326.05 236036.33 

L-Acetylcarnitine 21877132.97 3250112.04 516313.07 50453.82 
L-Arginine 706584.27 418116.83 12832427.97 453395.32 

L-Asparagine 197779.25 70678.92 1465400.08 69583.77 
L-Aspartic acid 279244.69 113722.11 331958.51 11017.02 

L-Carnitine 11261154.29 887933.15 271900.82 7077.86 
L-Glutamic acid 256424.32 227227.88 13555246.99 290003.92 

L-Glutamine 1838946.30 396593.71 839911.76 69843.26 
L-Histidine 195084.76 53015.50 1022795.23 47449.71 
L-Histidinol 1112566.12 162627.25 10164007.88 394111.02 
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L-Isoleucine 517775.87 180949.63 30580.17 1842.49 
L-Leucine 652760.21 200667.91 783227.80 39474.25 

L-Methionine 44020.19 7544.24 887918.24 37725.01 
L-Norleucine 220663.94 180247.31 369264.15 52420.63 

L-Palmitoylcarnitine 2029483.36 507592.36 136064.23 76632.17 
L-Phenylalanine 444826.15 120467.14 570330.99 22367.79 

L-Proline 2018391.64 148321.90 3347829.78 43872.48 
L-Serine 67302.72 25354.05 45310.99 801.17 

L-Threonine 216999.93 75452.05 220117.10 13871.15 
L-Tryptophan 90833.98 19872.68 253396.46 9696.50 

L-Tyrosine 210335.12 23318.11 925047.09 41715.07 
LysoPC(16:0) 6033925.34 2424153.21 497628.24 150042.67 
LysoPC(18:0) 4176371.31 1772720.69 220413.41 30508.68 

Methylmalonylcarnitine 1421867.51 710599.56 2266440.88 105833.55 
N6,N6,N6-Trimethyl- 

L-lysine 
2402360.68 597307.22 2686557.80 127204.35 

NAD 2112321.73 356485.66 5644409.44 269867.18 
N-Decanoylglycine 21110.31 11043.21 181709.41 60227.82 

Niacinamide 1009133.24 113092.47 1084718.71 71034.64 
N-Undecanoylglycine 205205.33 98666.06 1073334.59 358864.03 

Oleoylcarnitine 4126495.84 1066355.15 311001.40 190306.57 
Ophthalmic acid 36398.82 23198.93 94091.23 2085.54 

Ornithine 413922.32 63885.86 6443207.49 130052.89 
Oxidized glutathione 11613412.28 4595472.91 49992603.19 1949433.14 

Pantothenic acid 111824.97 35910.25 787547.29 15169.15 
Phosphocreatine 31595.71 12597.51 50346.09 2195.77 
Phosphoric acid 7383.75 5920.08 28058.76 474.55 
Pipecolic acid 69924.58 98177.03 131134.47 21772.37 
Proline betaine 6355894.24 8003257.93 124321.43 2345.49 

Propionylcarnitine 6302821.18 924522.51 4976433.48 110502.07 
Pyroglutamic acid 532726.01 113901.62 332322.57 10233.05 

Pyrrolidine 65963.69 11132.50 118775.30 5934.49 
Stearoylcarnitine 1991111.83 541859.71 93155.39 38869.35 

Taurine 137975.86 48447.48 73288.11 452.96 
Trigonelline 495849.31 396151.55 608417.08 15475.09 

Uridine 5'-diphosphate 67501.26 16004.26 143336.84 9870.28 
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4.6. DISCUSSION 

G6PD deficiency is an X-linked hereditary disorder caused due to a mutation in G6PD 

gene (Cappellini and Fiorelli 2008; Youngster et al. 2010). G6PD enzyme participates in the 

pentose phosphate pathway, which is the sole source for production of NADPH,  glutathione 

recycling in erythrocytes, and is essential for the function of catalase (Nkhoma et al. 2009; Mason 

et al. 2007; Cappellini and Fiorelli 2008; Judith Recht 2014). NADPH, GSH, and catalase 

constitute primary antioxidant defense system in human erythrocytes (Judith Recht 2014). The 

G6PDd erythrocytes have limited capability to regenerate NADPH and recycle GSH and thus, 

have lower levels of GSH (Judith Recht 2014; Mason et al. 2007). The results of the current study 

are consistent with the earlier reports and thus support the known data (Nkhoma et al. 2009; Mason 

et al. 2007; Cappellini and Fiorelli 2008; Judith Recht 2014).  

In this study, the basal normal and G6PDd metabolome profiles were compared to identify 

the major pathways which were modified in G6PDd erythrocytes. The comparison between 

metabolites in normal and G6PDd revealed that GSH levels were significantly lower in G6PDd 

erythrocytes. The GSH-Methionine-Glutamate pathway was interconnected and together 

participate in GSH synthesis (Tang et al. 2015). In our study, the levels of GSH, tripeptide analog 

of ophthalmic acid and glutamic acid, the precursor of GSH were significantly lower in G6PDd 

erythrocyte. Furthermore, 5'-methylthioadenosine  which plays a crucial role in methionine and 

purine salvage pathways (Avila et al. 2004) were higher. Moreover, the metabolites participate in 

glycerophospholipid pathway like choline, neurine and LysoPC (16:0) were lower (Gibellini and 

Smith 2010; Tweedie et al. 2006; Saito et al. 2014). Carnitine and derivatives of carnitine 

participate were higher and in lipid oxidation (Darghouth et al. 2011), and the metabolite of fatty 

acid namely, N-decanoylglycine and N-undecanoylglycine were significantly lower (Cruickshank-
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Quinn et al. 2014). These findings suggest disruption of lipid/fatty acid oxidation and 

glycerophospholipid pathway. The glycerophospholipids phosphatidylcholine play major roles in 

the structure and function of those eukaryotic membranes (Gibellini and Smith 2010), and the 

disruption of lipid oxidation and glycerophospholipid pathway might indicate the membrane 

fragility seen in G6PDd erythrocytes (Johnson et al. 1994). 

Another focus of the current study was to examine the metabolomes of both normal and 

G6PDd erythrocytes treated with a hemotoxic metabolite of PQ, 5,6-OQPQ for 30, 60, 120 and 

480 minutes. The results showed that the GSH-methionine-glutamic acid pathway was highly 

affected due to treatment in both erythrocytes. Oxidized glutathione and precursors of GSH 

namely, glutamic acid (Ellinger et al. 2011), 5-methylthioadenosine, and SAM were depleted at 

later time points (120 and 480 minutes) of treatment in both erythrocytes. Similarly, adenine the 

precursor of ATP was also depleted at later time points in both erythrocytes. However, the level 

of serine, BCGA and lysine were considerably increased due to treatment in both erythrocytes at 

120 and 480 minutes. Serine plays an important role in providing one-carbon units to the 

tetrahydrofolate (THF) cycle and supports ATP and NADPH generation. ATP generates by serine 

is used by methionine to form S-adenosyl methionine (SAM) (Maddocks et al. 2016). In addition, 

serine has antioxidant properties and it protects the cells from H2O2-induced oxidative stress 

(Miyazaki et al. 1992). BCGA is a derivative of glutamic acid and acts as metal ion chelator. 

BCGA also has antioxidant activity like the enzyme super oxide dismutase (Hamada-Kanazawa et 

al. 2010; Narahara et al. 2010). Like serine and BCGA, lysine also has antioxidant activities 

(O'Doherty et al. 2014). The change in these metabolites at 120 and 480 minutes indicates the 

compensatory mechanism of erythrocyte and suggest that it is almost similar in both erythrocytes. 

The level of ophthalmic acid, a tripeptide analog of GSH was increased due to treatment 
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in both erythrocytes at early and later time points. Ophthalmic acid was formed from 2-

aminobutyrate via consecutive reactions with gamma-glutamylcysteine and glutathione synthetase 

like glutathione formation. GSH contain a thiol group from cysteine in GSH and in ophthalmic 

acid the thiol group is replaced by a methyl group. The enzyme gamma-glutamylcysteine 

synthetase, is feedback-inhibited by GSH, and is considered as a rate-limiting step in GSH 

formation (Cuozzo and Kaiser 1999). GSH depletion caused by oxidative compounds like 

acetaminophen activates gamma-glutamylcysteine synthetase, which in turn induced ophthalmic 

acid formation. Though, unlike GSH, ophthalmic acid is not metabolized further and thus is 

accumulated (Soga et al. 2006). 

The levels of citicoline, SDMA and phosphocreatine were higher selectively in G6PDd 

erythrocytes due to 5,6-OQPQ treatment. Phosphocreatine decreases oxidative stress (Cunha et al. 

2014) and furthermore, it interacts with membrane lipids and causes modifications in membrane 

structure in order to protect cellular membranes against different insults (Tokarska-Schlattner et 

al. 2012). Citicoline is a biomarker of chronic hemolysis (Paglia et al. 1983). SDMA is pro-

inflammatory and pro-oxidant in nature (Tain and Hsu 2017) and is related with oxidative stress 

induction (Schepers et al. 2011). Higher SDMA levels have been reported in numerous clinical 

conditions like coronary artery disease, diabetes mellitus, hypertension, hyperuricemia, 

preeclampsia, polycystic ovary syndrome, and stroke (Tain and Hsu 2017). ADMA levels were 

also elevated but in both erythrocytes and at later time points. Elevated ADMA levels are 

associated with genetic disease-related with hemolysis like sickle cell disease, thalassemia and 

other complications related with hemolysis like leg ulcers, cholelithiasis, and priapism (Landburg 

et al. 2010).  

Treatment of 5,6-OQPQ elevated levels of proline and ornithine. Proline defends the cells 
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against hydrogen peroxide-induced stress and accumulation of proline is a compensatory response 

of hydrogen peroxide-induced stress. Moreover, proline takes care the intracellular GSH pool and 

the GSH/GSSG ratio of the cell during oxidative stress (Krishnan et al. 2008). Ornithine is a 

biomarker of hemolysis. During hemolysis, erythrocytes release red-cell arginase,  an enzyme 

cause conversion of arginine to ornithine (Morris et al. 2005). 

Thus, the current study suggests that histidine, GSH-Methionine-Glutamate, purine, 

glycerophospholipid and fatty acid oxidation pathways were greatly affected in G6PDd 

erythrocytes as compare to normal erythrocyte. Moreover, treatment of 5,6-OQPQ, a metabolite 

of PQ significantly modified GSH-methionine-glutamic acid, histidine and glycerophospholipid 

pathway. Furthermore, the metabolites changed at later time points suggest compensatory 

mechanism. The level of antioxidant like serine, lysine and BCGA were elevated in both 

erythrocytes due to 5,6-OQPQ treatment at later time points. Hemolysis related markers like 

citicoline and SDMA were also elevated selectively in G6PDd erythrocytes due to 5,6-OQPQ 

treatment which can be used as new hemotoxic marker related with PQ-induced. 
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CHAPTER 5 

FUTURE STUDIES 

 

8-aminoquinolines (8-AQs) represent an important drug class with unique antiprotozoal 

activities. 8-AQs are used in the treatment of leishmaniasis, pneumocystis infections, 

trypanosomiasis and malaria (Tekwani and Walker 2006). Primaquine (PQ) is a unique 8-AQ 

antimalarial drug. It is the only FDA-approved drug, which is active against the hard-to-kill liver 

stage of Plasmodium vivax and P. ovale and used to prevent malaria relapse (Ashley et al. 2014; 

Tekwani and Walker 2006). Malaria relapses significantly contribute to infection and morbidity in 

P. vivax and P. ovale malaria (Leslie et al. 2016). Further, PQ is the only drug having activity 

against mature stage V gametocytes of P. falciparum and thus recommended by the World Health 

Organization, to prevent malaria transmission (Tekwani and Walker 2006; Ashley et al. 2014). 

The current in vitro studies showed that the metabolites of PQ namely, 5-HPQ, 5,6-OQPQ, 

and MHQ are hemotoxic and induce a concentration-dependent hemotoxicity response by 

generating methemoglobinemia and producing oxidative stress in normal and G6PDd human 

erythrocytes. The PQ metabolite 5,6-OQPQ also depletes GSH and induces the exposure of 

phosphatidylserine (a marker for suicidal erythrocyte death-eryptosis) on the outer membrane of 

erythrocytes, selectively in G6PDd human erythrocytes. Externalization of PS on the outer 

membrane is the final commitment of erythrocyte to be phagocytized by macrophages. The 

eryptotic pathway triggers the removal of damaged erythrocytes from the circulation in the G6PDd 
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population on exposure to PQ. Further, other biochemical and cellular markers associated with 

eryptosis namely, intraerythrocytic calcium levels and activation of calpain can also be evaluated 

to gain a better insight into the pathways and events that lead to hemolysis caused by PQ.  

The role of NQO2, a cytosolic flavoprotein enzyme involved in metabolic 

detoxification/activation of quinones, in PQ-induced hemolytic anemia was also investigated. To 

acheieve this, the inhibitors of NQO2 namely, melatonin (Mel), resveratrol (Res) and quercetin 

(Quer) were used as the probes. The interactions between human NQO2 (PBD: 4FGJ) and PQ 

metabolites (5-HPQ, 5,6-OQPQ, and MHQ) were also investigated using molecular docking 

approach. The results of the current study suggest that co-treatment of erythrocytes with NQO2 

inhibitors and PQ metabolites potentiated the hemotoxicity compared to PQ metabolites alone. 

These results suggest potential role of NQO2 in detoxification of reactive metabolites of PQ and 

protection of erythrocytes from PQ-induced hemolysis. The computational docking results suggest 

that Mel, menadione, PQ and PQ metabolites bind at the same binding pocket of the NQO2 with 

a slightly different orientations; however, the glide gscores results suggest that PQ and its 

metabolites may have a better affinity towards NQO2 as compared to Mel and menadione. 

Additional experiments may be done to understand the functional interactions (substrate or 

inhibitor) of PQ metabolites with human NQO2. 

Finally, the changes in metabolite levels and biochemical pathways in normal and G6PDd 

erythrocytes due to 5,6-OQPQ treatments were examined. A battery of metabolites (citicoline, 

SDMA and phosphocreatine) are selectively changed in the G6PDd erythrocytes. These 

metabolites can be evaluated as the markers of PQ-induced hemolysis. Changes in some 

metabolites like serine, BCGA, lysine, glutamic acid suggest compensatory mechanism of PQ-
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induced toxicity in normal and G6PDd erythrocytes.  The knowledge regarding compensatory 

mechanisms can be used to formulate the strategy for attenuation of PQ-induced toxicity, without 

compromising with the therapeutic activity  

The study provides a better insight into the pathways and biomarkers of toxicity involved 

with the PQ-treatment. Further, the knowledge regarding the interaction of PQ metabolites with 

NQO2 enzyme is clearer now and suggests the potential target related to the PQ-toxicity. In 

summary, the data obtained in this study provide the knowledge to understand the mechanism, 

pathway and target associated with PQ toxicity and would help to improved therapeutic value of 

PQ. Also, the knowledge generated through proposed studies will allow multiple avenues of 

development of 8-AQ analogs with improved safety and therapeutic profiles for malaria control 

and elimination campaigns. 
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Meeting, October 25th – 29th, 2015 at Philadelphia Marriott Downtown, Philadelphia, 
Pennsylvania, USA. 
 

5. Drug Discovery and Development Colloquium (DDDC), June 22nd-24th, 2015. Thad 
Cochran Research Center, University, Mississippi, USA. 
 

6. Medicinal Chemistry-Pharmacognosy Meeting-Miniature (MALTO) 42nd Annual 
Meeting, May 17th-19th, 2014 – University of Mississippi, University, Mississippi, 
USA. 
 

7. 3rd Malaria Symposium. April 22nd, 2015. E. F. Yerby Conference Center, Grove 
Loop, University, Mississippi, USA. 
 

8. Oxford International Conference on the Science of Botanicals (ICSB) 15th Annual 
Meeting.  April 13th - 16th, 2015. Oxford Conference Center, Oxford, Mississippi, USA. 
 

9. Southern Central Chapter of the Society of Toxicology Meeting, 2014 Fall 
Annual Meeting. October 23th-24th, 2014. University of Mississippi, University, 
Mississippi, USA. 
 

10. American Society of Tropical Medicine & Hygiene (ASTMH), 63rd Annual 
Meeting, November 2th-6th, 2014, Sheraton New Orleans and the New Orleans 
Marriott, New Orleans, Louisiana, USA. 
 

11. The American Society of Pharmacognosy (ASP), 55th Annual Meeting, August 2nd-
6th, 2014, Oxford Conference Center, Oxford, Mississippi, USA.  
 

12. Medicinal Chemistry-Pharmacognosy Meeting-Miniature (MALTO) 41st 
Annual Meeting, May 18th-20th, 2014. The University of Tennessee Health Science 
Center, Memphis, Tennessee, USA. 
 

13. 2nd Malaria Symposium. April 24th, 2014. E. F. Yerby Conference Center, Grove 
Loop, University, Mississippi, USA. 
 

14. 1st Malaria Symposium. April 2013. E. F. Yerby Conference Center, Grove Loop, 
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University, Mississippi, USA. 
 

 
Technical/Scientific Workshops Attended: 
 

1. Metabolomics Workshop. June 14th- 18th, 2015. University of Alabama, Birmingham, 
Tennessee, USA. 
 

2. EuPathDB Workshop. June 17th- 20th, 2012. University of Georgia, Athens, Georgia, 
USA. 
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